A powered longwall mining system comprises three basic machines: a shearer, a scraper (longwall) conveyor, and a powered roof support. The powered roof support as a component of a longwall complex has two functions. It protects the working from roof rocks that fall to the area where the machines and people work and transports the machines and devices in the longwall as the mining operation proceeds further into the seam by means of hydraulic actuators that are adequately connected to the powered support. The actuators are controlled by a hydraulic or electro-hydraulic system. The tests and analyses presented in the developed procedure are oriented towards the possibility of introducing automatic control, without the participation of an operator. This is important for the exploitation of seams that are deposited at great depths. The primary objective was to develop a comprehensive methodology for testing and evaluating the possibility of using the system under operating conditions. The conclusions based on the analysis presented are a valuable source of information for the designers in terms of increasing the efficiency of the operation of the system and improving occupational safety. The authors have proposed a procedure for testing and evaluation to introduce an automatic control system into the operating conditions. The procedure combines four areas. Tests and analyses were carried out in order to determine the extent to which the system could be potentially used in the future. The presented solution includes certification and executive documentation.
Solid backfill mining as a green mining method has already been successfully applied in many mine sites. Higher requirements for the backfilling materials have been put forward in special regions, such as shallow coal seams, ecologically susceptible areas, and sites with building on the surface. The control effects of common backfilling materials on in situ strata of gob need to be studied and compared to ensure the suitable materials are applied in the mine. The meso-structure, stress variation, energy dissipation, and backfilling effects of the five common solid backfilling materials, which are Aeolian sand, gangue, mineral waste residue, coal ash, and loess are analyzed in this paper. The results show that the Aeolian sand and gangue are densely packed and internally hard when compared to other backfill materials. The deformation of the five materials to absorb the same amount of energy in the order of higher to lower was determined as Aeolian sand, gangue, mineral waste residue, coal ash and loess. The Aeolian sand’s strain energy density is 1.67 times larger than the loess, however, the Aeolian’s strain energy density in front of working face is just 32.2% of the loess, which is important to ensure the safety of the working face. The stress changes were monitored in situ with Aeolian sand and gangue as backfill materials. The monitoring results show that the Aeolian sand stress increase rate is quicker than gangue, which can support the roof effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.