We provide a systematic study of the isospin composition and neutron-to-proton N Z ratio dependence of nuclear short-range correlations (SRC) across the nuclear mass table. We use the low-order correlation operator approximation (LCA) to compute the SRC contribution to the single-nucleon momentum distributions for 14 different nuclei from A = 4 to A = 208. Ten asymmetric nuclei are included for which the neutrons outnumber the protons by a factor of up to 1.54. The computed momentum distributions are used to extract the pair composition of the SRC. We find that there is a comprehensive picture for the isospin composition of SRC and their evolution with nucleon momentum. We also compute the non-relativistic kinetic energy of neutrons and protons and its evolution with nuclear mass A and N Z . Confirming the conclusions from alternate studies it is shown that the minority species (protons) become increasingly more short-range correlated as the neutron-to-proton ratio increases. We forge connections between measured nucleon-knockout quantities sensitive to SRC and single-nucleon momentum distributions. It is shown that the LCA can account for the observed trends in the data, like the fact that in neutron-rich nuclei the protons are responsible for an unexpectedly large fraction of the high-momentum components.
Short-range correlations (SRC) in asymmetric nuclei with an unusual neutronto-proton ratio can be studied with quasi-free two-nucleon knockout processes following the collision between accelerated ions and a proton target. We derive an approximate factorized cross section for those SRC-driven p(A, p N 1 N 2 ) reactions. Our reaction model hinges on the factorization properties of SRC-driven A(e, e N 1 N 2 ) reactions for which strong indications are found in theory-experiment comparisons. In order to put our model to the test we compare its predictions with results of 12 C(p, p pn) measurements conducted at Brookhaven National Laboratory (BNL) and find a fair agreement. The model can also reproduce characteristic features of SRC-driven two-nucleon knockout reactions, like back-to-back emission of the correlated nucleons. We study the asymmetry dependence of nuclear SRC by providing predictions for the ratio of proton-proton to proton-neutron knockout cross sections for the carbon isotopes 9−15 C thereby covering neutron excess values (N − Z)/Z between -0.5 and +0.5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.