The study was undertaken to show that polymorphic isoniazid elimination in humans is trimodal; that the acetylator genotype and eliminator phenotype of the individual patient are concordant; and that the differences in the pharmacokinetic parameters of fast, intermediate, and slow eliminator subgroups are statistically significant. Sixty adult patients of both sexes and of mixed race with tuberculosis participated in the trial. The apparent elimination rate constant (k, h(-1)) and the area under the isoniazid concentration-time curve (AUC, mg/L/h), over the interval 2 to 6 h after oral isoniazid were determined in all patients; NAT2 allele composition was determined in 47 patients. Serum INH concentrations were determined by HPLC and genotypes by PCR/restriction enzyme analysis. Three eliminator phenotypes could be distinguished, and concordance between the phenotype and the genotype of the individual could be demonstrated. The isoniazid concentration-time profiles of the three eliminator subgroups were significantly different (p < 0.05). The NAT2*12A allele, which codes for fast acetylation, has a high frequency in the population studied, the intermediate acetylator genotype is constituted of codominant fast and slow alleles, and the distribution of phenotypes/genotypes in the population is consistent with Hardy-Weinberg predictions. The therapeutic implications of polymorphic isoniazid metabolism are discussed.
Most actinopterygians replace their teeth continuously throughout life. To address the question of where and how replacement teeth form in actinopterygians, it is advisable to investigate well-chosen representatives within the lineage. The African bichir, Polypterus senegalus, belongs to the earliest diverged group of the actinopterygian lineage with currently living representatives. Its well characterized dentition, together with its phylogenetic position, make this species an attractive model to answer following questions: (1) when and where does the replacement tooth form and how is it connected with the dental organ of the predecessor, and (2) is there any evidence for the presence of epithelial stem cells, hypothesized to play a role in replacement? Serial sections show that one tooth family can contain up to three members, which are all interconnected by dental epithelium. Replacement teeth develop without the presence of a successional dental lamina. We propose that this is the plesiomorphic condition for tooth replacement in actinopterygians. BrdU pulse-chase experiments reveal cells in the outer and middle dental epithelium, proliferating at the time of initiation of a new replacement tooth. It is tempting to assume that these cell layers provide a stem cell niche. The observed absence of label-retaining cells after long chase times (up to 8 weeks) is held against the light of divergent views on cell cycling properties of stem cells. At present, our data do not support, neither reject, the hypothesis on involvement of epithelial stem cells within the process of continuous tooth replacement.
The Atlantic salmon (Salmo salar) and African bichir (Polypterus senegalus) are both actinopterygian fish species that continuously replace their teeth without the involvement of a successional dental lamina. Instead, they share the presence of a middle dental epithelium: an epithelial tier enclosed by inner and outer dental epithelium. It has been hypothesized that this tier could functionally substitute for a successional dental lamina and might be a potential niche to house epithelial stem cells involved in tooth cycling. Therefore, in this study we performed a BrdU pulse chase experiment on both species to (1) determine the localization and extent of proliferating cells in the dental epithelial layers, (2) describe cell dynamics and (3) investigate if label-retaining cells are present, suggestive for the putative presence of stem cells. Cells proliferate in the middle dental epithelium, outer dental epithelium and cervical loop at the lingual side of the dental organ to form a new tooth germ. Using long chase times, both in S. salar (eight weeks) and P. senegalus (eight weeks and twelve weeks), we could not reveal the presence of label-retaining cells in the dental organ. Immunostaining of P. senegalus dental organs for the transcription factor Sox2, often used as a stem cell marker, labelled cells in the zone of outer dental epithelium which grades into the oral epithelium (ODE transition zone) and the inner dental epithelium of a successor only. The location of Sox2 distribution does not provide evidence for epithelial stem cells in the dental organ and, more specifically, in the middle dental epithelium. Comparison of S. salar and P. senegalus reveals shared traits in tooth cycling and thus advances our understanding of the developmental mechanism that ensures lifelong replacement.
In the lesser spotted catshark (Scyliorhinus canicula), as in most non-mammalian vertebrates, the dentition renews throughout life. To contribute to our understanding of how continuous tooth replacement is achieved, we searched for evidence for the presence of stem cells in this species. Three-dimensional reconstructions of juvenile (2-3 weeks post-hatch) specimens showed that tooth families merge imperceptibly with so-called interdental zones within a continuous and permanent dental lamina. Interdental regions are composed of three layers, continuous with cervical loop, middle, and outer dental epithelium of the tooth families, respectively. A BrdU pulse-chase experiment revealed that cell proliferation is initiated in the lingual part of the dental lamina and the resulting population shifts one tooth position towards the oral epithelium in around four to five weeks. In the longest chase time (114 days) label-retaining and arguably non-differentiated cells were present at the lingual border of the dental lamina. These were found in the outer and middle dental epithelium, both within and between tooth families. This area of the dental lamina did not show expression or distribution of Sox2. Our data support the hypothesis that stem cells reside at the lingual border of the continuous dental lamina, more specifically in the middle dental epithelium at the level of the tooth families, and in its extension between the tooth families. To demonstrate their true stemness and their role in continuous tooth replacement, it remains to be shown that these cells have the potential to give rise to a complete new successor.
We investigated the tooth pattern on the lower jaw of adult farmed Atlantic salmon (Salmo salar L.) to elucidate whether this pattern is more regular, with less variations, than that observed in wild Atlantic salmon studied previously. A highly regular and predictable tooth pattern, in combination with the availability of Atlantic salmon in near unlimited numbers, should provide us with an ideal model to test the hypothesis whether field or local control regulates the process of tooth replacement. In 30 animals a tooth was damaged, or partially or nearly completely extracted. The animals were sacrificed after a recovery period varying between 1 and 12 weeks. X-rays were taken prior to and at various time points after manipulation. After sacrifice, dissected jaws were cleared and stained. Surprisingly, farmed Atlantic salmon do not display a regular pattern of tooth replacement and rather resemble the marine life stage of wild Atlantic salmon. While the irregularity of the tooth replacement pattern speaks against general (field) regulation of the replacement process, it impedes its use as a tool with which the nature of this control mechanism can be studied experimentally. Our observations nevertheless provide the first preliminary data on tooth growth and turnover in Atlantic salmon
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.