The scoring function is one of the most important components in structure-based drug design. Despite considerable success, accurate and rapid prediction of protein-ligand interactions is still a challenge in molecular docking. In this perspective, we have reviewed three basic types of scoring functions (force-field, empirical, and knowledge-based) and the consensus scoring technique that are used for protein-ligand docking. The commonly-used assessment criteria and publicly available protein-ligand databases for performance evaluation of the scoring functions have also been presented and discussed. We end with a discussion of the challenges faced by existing scoring functions and possible future directions for developing improved scoring functions.
Abstract:The docking methods used in structure-based virtual database screening offer the ability to quickly and cheaply estimate the affinity and binding mode of a ligand for the protein receptor of interest, such as a drug target. These methods can be used to enrich a database of compounds, so that more compounds that are subsequently experimentally tested are found to be pharmaceutically interesting. In addition, like all virtual screening methods used for drug design, structure-based virtual screening can focus on curated libraries of synthesizable compounds, helping to reduce the expense of subsequent experimental verification. In this review, we introduce the protein-ligand docking methods used for structure-based drug design and other biological applications. We discuss the fundamental challenges facing these methods and some of the current methodological topics of interest. We also discuss the main approaches for applying protein-ligand docking methods. We end with a discussion of the challenging aspects of evaluating or benchmarking the accuracy of docking methods for their improvement, and discuss future directions.
Inverse docking is a relatively new technique that has been used to identify potential receptor targets of small molecules. Our docking software package MDock is well suited for such an application as it is both computationally efficient, yet simultaneously shows adequate results in binding affinity predictions and enrichment tests. As a validation study, we present the first stage results of an inverse-docking study which seeks to identify potential direct targets of PRIMA-1. PRIMA-1 is well known for its ability to restore mutant p53's tumor suppressor function, leading to apoptosis in several types of cancer cells. For this reason, we believe that potential direct targets of PRIMA-1 identified in silico should be experimentally screened for their ability to inhibit cancer cell growth. The highest-ranked human protein of our PRIMA-1 docking results is oxidosqualene cyclase (OSC), which is part of the cholesterol synthetic pathway. The results of two followup experiments which treat OSC as a possible anti-cancer target are promising. We show that both PRIMA-1 and Ro 48-8071, a known potent OSC inhibitor, significantly reduce the viability of BT-474 breast cancer cells relative to normal mammary cells. In addition, like PRIMA-1, we find that Ro 48-8071 results in increased binding of mutant p53 to DNA in BT-474 cells (which highly express p53). For the first time, Ro 48-8071 is shown as a potent agent in killing human breast cancer cells. The potential of OSC as a new target for developing anticancer therapies is worth further investigation.
In this study, we developed two sets of iterative knowledge-based scoring functions, ITScore_pdbbind(rigid) and ITScore_pdbbind(flex), using the rigid decoy structures and flexible decoy structures that were generated based on the protein-ligand complexes in the refined set of PDBbind 2012, respectively. These two scoring functions were evaluated using the 2013 and 2014 CSAR benchmarks. The results were compared with the results of two other scoring functions, Vina scoring function and ITScore, the scoring function that we previously developed from the rigid decoy structures of a smaller set of protein-ligand complexes. A graph-based method was developed to evaluate the root-mean-square deviation (RMSD) between two conformations of the same ligand with different atom names and orders due to different file preparations, and the program is freely available. Our study showed that the two new scoring functions that were developed based on the larger training set yielded significantly improved performance on binding mode predictions. For binding affinity prediction, all the four scoring functions showed protein-dependent performances. We suggest to develop protein family-dependent scoring functions for accurate binding affinity prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.