In this paper, the trap efficiency (TE) of retention dams was investigated using laboratory experiments. To map the relation between TE and involved parameters, artificial intelligence (AI) methods including artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were utilized. Results of experiments indicated that the range of TE varies between 30 and 98%; hence, this structure can be recommended to control sediment transport in watershed management plans. Experimental results showed that by increasing the longitudinal slope of streams, TE decreases. This finding was observed for Vf/Vs parameter, as well. By increasing the mean diameter grain size (D50) and specific gravity of sediments (Gs), TE increases. Results of all applied AI models demonstrated that all of them have suitable performance; however, the minimum data dispersivity was observed in SVM outcomes. It is notable that the best performance of transfer, membership and kernel functions were related to tansig, gaussmf and radial basis function (RBF) for ANN, SVM and ANFIS, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.