We presented a fully automated CAD system that seamlessly integrates within the clinical work flow of the radiologist. Our clinically motivated features resulted in a great performance of both the supervised and unsupervised learners that we utilize to validate our CAD system. Our CAD system results are promising to serve in clinical applications after extensive validation.
Lumbar area of the vertebral column bears the most load of the human body and thus it is responsible for the major portion of lower back pain from which 80% to 90% of people suffer from during their lifetime. Vertebra related diseases are mainly fracture and are usually diagnosed from X-ray radiographs or CT scans depending on the severity of the problem. In this paper, we propose a fully automated lumbar vertebra segmentation that accurately and robustly produces a smooth contour around each of the vertebrae. This segmentation is very useful in any subsequent CAD system for diagnosis and quantification of vertebrae fractures. It also serves the radiologist during the clinical routine. Our method shows an excellent level of vertebra boundary smootheness that was visually approved by our collaborating radiologist for each vertebra and each case from our fifty cases dataset that includes both normal and abnormal cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.