Heavy metal (HM) accumulation in soil and plants can occur when water contaminated with HMs is used as a source of irrigation (El-Salam Canal, Egypt). In this study, the effect of watering potato crop in sandy soil from a polluted water source under flood irrigation (FI), sprinkler irrigation (SI), and surface drip irrigation (DI) on the transport of the HMs copper (Cu), manganese (Mn), lead (Pb), and zinc (Zn) in the root zone was experimentally investigated. HM concentrations in potato plant parts was also determined. The field experiments were conducted in a completely randomized block with three replicates for each irrigation method by using nine field lysimeters. Soil and plant samples were collected at the end of the growing season to determine their HM content. The results showed that regardless of irrigation method, irrigation with HM contaminated water raised HM concentrations in both soil and potato plants. DI produced the highest concentrations of most HMs (Cu, Mn, and Pb) in the upper soil layer (0–40 cm) and highest Cu, Pb, and Zn concentrations in plant tubers as well. Maximum Zn concentration in the upper soil layer and maximum Mn concentration in plant tubers occurred under SI. The maximum concentrations of Cu, Mn, Pb, and Zn in both the upper soil layer and plant tubers were 12.0, 140.0, 11.6 and 67.9 mg/kg and 6.3, 9.4, 2.3 and 23.9 mg/kg, respectively. However, FI produced the highest concentrations in the deep soil layer (40–60 cm) and the least concentration of HMs in plant tubers. These concentrations were 18.8, 203.8, 13.3 and 70 mg/kg and 4.0, 6.0, 0.6 and 17.1 mg/kg in soil and plant tubers for Cu, Mn, Pb, and Zn, respectively. The maximum concentrations of HMs in soil and potato plants were lower than the maximum permissible limits. Therefore, El-Salam Canal water appears not to be harmful in the short term. However, as shown in the results, HM accumulation depends on irrigation technique; thus, more studies are needed to determine harmful effects in the long term.
Heavy metal (HM)-polluted soil is a serious concern, especially as brackish water is widely used for irrigation purposes in water-scarce countries. In this study, the HYDRUS-2D model was used to simulate HM (copper (Cu), lead (Pb), and zinc (Zn)) transport through agricultural land cultivated with potato crops under surface drip irrigation to explore the potential groundwater contamination risk. Three soil types, namely, silty clay loam, sandy loam, and sandy soil, and two irrigation schemes, irrigation every two days (scheme A) and irrigation every four days (scheme B), were considered during the simulations. Firstly, the ability of HYDRUS-2D to simulate water flow was validated using data obtained from a full growing season of the potato crop in a lysimeter irrigated by surface drip irrigation using El-Salam Canal water, Egypt (i.e., water contaminated by HMs). Secondly, the model was calibrated for solute transport parameters. After that, the investigated simulation scenarios were executed. The results showed that HYDRUS-2D effectively simulated water flow. Moreover, a good agreement between the simulations and experimental results of HM concentrations under the calibrated solute parameters was obtained with R2 values of 0.99, 0.91, and 0.71 for Cu, Pb, and Zn concentrations, respectively. HM distribution is considerably influenced by the HMs’ adsorption isotherm. The results of the investigated scenarios reveal that soil texture has a greater impact on HM concentrations in the simulation domain and on the contamination risk of the groundwater than the irrigation scheme. Under both irrigation schemes, lower HM concentrations were observed in sand, while higher values were observed in silty clay loam. Subsequently, the potential shallow groundwater contamination risk is greater when cultivating potatoes in sand, as higher HM concentrations were found in drainage water compared to the two other investigated soils, regardless of the irrigation scheme. The cumulative Cu, Pb, and Zn concentrations in drainage water corresponding to scheme A for silty clay loam and sandy loam were 1.65, 1.67, and 1.67 and 1.15, 1.14, and 1.15 times higher, respectively, than scheme B. To safeguard the sustainability of groundwater and agricultural lands irrigated with water contaminated by HMs, it is recommended to adopt an irrigation frequency of once every four days in soils with silty clay loam and sandy loam textures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.