Since the 1960s, there has been very little diversification of oil palm (Elaeis guineensis) seed production, with mainly Deli × La Mé and Deli × Congo type crosses. The Deli origin, which was introduced from Africa into Indonesia in 1848, is unavoidable in breeding. In order to understand the complementarity between the Africa and "Asia" origins, and to diversify the genetic base of oil palm production, the structure of the genetic resources involved in the history of oil palm breeding in relation to African germplasm including subspontaneous populations needs to be understood. In this study, 318 individuals from 26 origins and eight countries were analysed with 14 microsatellite loci. Descriptive and Bayesian analyses of oil palm genetic diversity (Principal Coordinates Analysis, Neighbour-Joining Tree and Structure software) revealed two original groups which reflected the discontinuity of African species at the Dahomey Gap, West Africa (Group I) on the one hand, and "Benin-Nigeria-Cameroon-Congo-Angola" (Group II) on the other hand. The Deli group (Group III), derived from group II, is the result of artificial selection (mass selection). The genetic structuring revealed showed the positive contribution of the within-population mass selection practiced in the Deli population, and explains the success of Deli × La Mé and Deli × Congo crosses. A selection strategy is proposed, based on the yet-to-beexploited complementarity that exists between the two African genetic groups and on within-group improvement. We suggest (Deli × Group II) × Group I crosses, so that group II benefits from the quality of the Deli origin.
BackgroundDuring the Neolithic revolution, early farmers altered plant development to domesticate crops. Similar traits were often selected independently in different wild species; yet the genetic basis of this parallel phenotypic evolution remains elusive. Plant architecture ranks among these target traits composing the domestication syndrome. We focused on the reduction of branching which occurred in several cereals, an adaptation known to rely on the major gene Teosinte-branched1 (Tb1) in maize. We investigate the role of the Tb1 orthologue (Pgtb1) in the domestication of pearl millet (Pennisetum glaucum), an African outcrossing cereal.Methodology/Principal FindingsGene cloning, expression profiling, QTL mapping and molecular evolution analysis were combined in a comparative approach between pearl millet and maize. Our results in pearl millet support a role for PgTb1 in domestication despite important differences in the genetic basis of branching adaptation in that species compared to maize (e.g. weaker effects of PgTb1). Genetic maps suggest this pattern to be consistent in other cereals with reduced branching (e.g. sorghum, foxtail millet). Moreover, although the adaptive sites underlying domestication were not formerly identified, signatures of selection pointed to putative regulatory regions upstream of both Tb1 orthologues in maize and pearl millet. However, the signature of human selection in the pearl millet Tb1 is much weaker in pearl millet than in maize.Conclusions/SignificanceOur results suggest that some level of parallel evolution involved at least regions directly upstream of Tb1 for the domestication of pearl millet and maize. This was unanticipated given the multigenic basis of domestication traits and the divergence of wild progenitor species for over 30 million years prior to human selection. We also hypothesized that regular introgression of domestic pearl millet phenotypes by genes from the wild gene pool could explain why the selective sweep in pearl millet is softer than in maize.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.