Double-strand breaks (DSBs) trigger rapid and transient transcription pause to prevent collisions between repair and transcription machineries at damage sites. Little is known about the mechanisms that ensure transcriptional block after DNA damage. Here, we reveal a novel role of the negative elongation factor NELF in blocking transcription activity nearby DSBs. We show that NELF-E and NELF-A are rapidly recruited to DSB sites. Furthermore, NELF-E recruitment and its repressive activity are both required for switching off transcription at DSBs. Remarkably, using I-SceI endonuclease and CRISPR-Cas9 systems, we observe that NELF-E is preferentially recruited, in a PARP1-dependent manner, to DSBs induced upstream of transcriptionally active rather than inactive genes. Moreover, the presence of RNA polymerase II is a prerequisite for the preferential recruitment of NELF-E to DNA break sites. Additionally, we demonstrate that NELF-E is required for intact repair of DSBs. Altogether, our data identify the NELF complex as a new component in the DNA damage response.
Cells have evolved DNA damage response (DDR) to repair DNA lesions and thus preserving genomic stability and impeding carcinogenesis. DNA damage induction is accompanied by transient transcription repression. Here, we describe a previously unrecognized role of chromodomain Y-like (CDYL1) protein in fortifying double-strand break (DSB)-induced transcription repression and repair. We showed that CDYL1 is rapidly recruited to damaged euchromatic regions in a poly (ADP-ribose) polymerase 1 (PARP1)-dependent, but ataxia telangiectasia mutated (ATM)-independent, manner. While the C-terminal region, containing the enoyl-CoA hydratase like (ECH) domain, of CDYL1 binds to poly (ADP-ribose) (PAR) moieties and mediates CDYL1 accumulation at DNA damage sites, the chromodomain and histone H3 trimethylated on lysine 9 (H3K9me3) mark are dispensable for its recruitment. Furthermore, CDYL1 promotes the recruitment of enhancer of zeste homolog 2 (EZH2), stimulates local increase of the repressive methyl mark H3K27me3, and promotes transcription silencing at DSB sites. In addition, following DNA damage induction, CDYL1 depletion causes persistent G2/M arrest and alters H2AX and replication protein A (RPA2) phosphorylation. Remarkably, the 'traffic-light reporter' system revealed that CDYL1 mainly promotes homology-directed repair (HDR) of DSBs in vivo. Consequently, CDYL1-knockout cells display synthetic lethality with the chemotherapeutic agent, cisplatin. Altogether, our findings identify CDYL1 as a new component of the DDR and suggest that the HDR-defective 'BRCAness' phenotype of CDYL1-deficient cells could be exploited for eradicating cancer cells harboring CDYL1 mutations.
Various types of human cancers exhibit amplification or deletion of KDM4A-D members, which selectively demethylate H3K9 and H3K36, thus implicating their activity in promoting carcinogenesis. On this basis, it was hypothesized that dysregulated expression of KDM4A-D family promotes chromosomal instabilities by largely unknown mechanisms. Here, we show that unlike KDM4A-B, KDM4C is associated with chromatin during mitosis. This association is accompanied by a decrease in the mitotic levels of H3K9me3. We also show that the C-terminal region, containing the Tudor domains of KDM4C, is essential for its association with mitotic chromatin. More specifically, we show that R919 residue on the proximal Tudor domain of KDM4C is critical for its association with chromatin during mitosis. Interestingly, we demonstrate that depletion or overexpression of KDM4C, but not KDM4B, leads to over 3-fold increase in the frequency of abnormal mitotic cells showing either misaligned chromosomes at metaphase, anaphase–telophase lagging chromosomes or anaphase–telophase bridges. Furthermore, overexpression of KDM4C demethylase-dead mutant has no detectable effect on mitotic chromosome segregation. Altogether, our findings implicate KDM4C demethylase activity in regulating the fidelity of mitotic chromosome segregation by a yet unknown mechanism.
KDM4D is a lysine demethylase that removes tri-and di-methylated residues from H3K9 and is involved in transcriptional regulation and carcinogenesis. We recently showed that KDM4D is recruited to DNA damage sites in a PARP1-dependent manner and facilitates double-strand break repair in human cells. Moreover, we demonstrated that KDM4D is an RNA binding protein and mapped its RNA-binding motifs. Interestingly, KDM4D-RNA interaction is essential for its localization on chromatin and subsequently for efficient demethylation of its histone substrate H3K9me3. Here, we provide new data that shed mechanistic insights into KDM4D accumulation at DNA damage sites. We show for the first time that KDM4D binds poly(ADP-ribose) (PAR) in vitro via its C-terminal region. In addition, we demonstrate that KDM4D-RNA interaction is required for KDM4D accumulation at DNA breakage sites. Finally, we discuss the recruitment mode and the biological functions of additional lysine demethylases including KDM4B, KDM5B, JMJD1C, and LSD1 in DNA damage response.
The KDM4 family of lysine demethylases consists of five members, KDM4A, -B and -C that demethylate H3K9me2/3 and H3K36me2/3 marks, while KDM4D and -E demethylate only H3K9me2/3. Recent studies implicated KDM4 proteins in regulating genomic instability and carcinogenesis. Here, we describe a previously unrecognized pathway by which hyperactivity of KDM4 demethylases promotes genomic instability. We show that overexpression of KDM4A-C, but not KDM4D, disrupts MSH6 foci formation during S phase by demethylating its binding site, H3K36me3. Consequently, we demonstrate that cells overexpressing KDM4 members are defective in DNA mismatch repair (MMR), as evident by the instability of four microsatellite markers and the remarkable increase in the spontaneous mutations frequency at the HPRT locus. Furthermore, we show that the defective MMR in cells overexpressing KDM4C is mainly due to the increase in its demethylase activity and can be mended by KDM4C downregulation. Altogether, our data suggest that cells overexpressing KDM4A-C are defective in DNA MMR and this may contribute to genomic instability and tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.