Apart from the anticancer, antioxidant, anti‐inflammatory effects, and inhibition of aromatase, chrysin is involved in the protection of cardiovascular disorders. Cardiovascular complications are the main cause of death induced by aluminum phosphide (AlP) which is related to oxidative stress and mitochondrial damages. For this purpose, we investigated the effect of chrysin as an antioxidant and mitochondrial protective agent against AlP‐induced toxicity in isolated cardiomyocytes and mitochondria obtained from rat heart ventricular. Using by biochemical and flow cytometry, cell viability, reactive oxygen species (ROS) formation, mitochondria membrane potential (MMP), lysosomal membrane integrity, malondialdehyde (MDA) content, and glutathione (GSH) and oxidized glutathione (GSSG) content were measured in isolated cardiomyocytes. Also, mitochondrial toxicity parameters such as mitochondrial NADH/succinate dehydrogenase activity, mitochondrial swelling, ROS formation, MMP collapse, and lipid peroxidation were analyzed in isolated mitochondria. Our results showed that the administration of chrysin (up to 10 μM) efficiently decreased (P < 0.05) cytotoxicity, oxidative, lysosomal, and mitochondrial damages induced by AlP, in isolated cardiomyocytes. Also, our finding in isolated mitochondria showed that chrysin (up to 10 μM) significantly (P < 0.05) decreased AlP‐induced mitochondrial toxicity. These findings demonstrated that chrysin as an antioxidant and mitochondrial protective agent exert protective effect in wild‐type cardiomyocyte treated with AlP. It was concluded that chrysin significantly reduced the toxicity of AlP in isolated cardiomyocytes and mitochondria. Due to the very low toxicity of chrysin for humans, it could be a promising agent in treatment of AlP poisoning.
The possible action of polyphenolic compounds in the reduction of reactive oxygen species (ROS) and mitochondrial toxicity may suggest them as putative agents for the treatment of drug-induced mitochondrial dysfunction and cardiotoxicity. This study was designed to explore protective effect of ellagic acid (EA) against celecoxib-induced cellular and mitochondrial toxicity in cardiomyocytes and their isolated mitochondria. In order to do this, isolated cardiomyocytes and mitochondria were pretreated with 3 different concentrations of EA (10, 50 and 100 µM), after which celecoxib (16 µg/ml) was added to promote deleterious effects on cells and mitochondria. Using flow cytometry and biochemical methods, the parameters of cellular and mitochondrial toxicity were investigated. Our results showed that celecoxib (16 µg/ml) caused a significant decrease in cell viability, mitochondrial membrane potential (MMP), glutathione (GSH) in intact cardiomyocytes and succinate dehydrogenase (SDH) activity, MMP collapse, and mitochondrial swelling, and a significant increase in reactive oxygen species (ROS) formation, lipid peroxidation (LP) and oxidative stress in isolated mitochondria. Also, our results revealed that co-administration of EA (50 and 100 µM) with celecoxib significantly attenuated the cellular and mitochondrial toxicity effects. In this study, we showed that simultaneous treatment with of EA ameliorated the cellular and mitochondrial toxicity induced by celecoxib, with cardiomyocytes presenting normal activity compared to the control group, and mitochondria retaining their normal activity.
In spite of the cardiotoxic effect of selective cyclooxygenase-2 inhibitors, they are most widely used as anti-inflammatory and analgesic drugs. Today, valdecoxib and rofecoxib have been withdrawn in the market but celecoxib remains.In this study, we focused on an analysis of celecoxib toxic effects on isolated mitochondria. Isolated rat heart mitochondria were obtained using differential centrifugation. Using flow cytometry and biochemical assays, we searched succinate dehydrogenases, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) formation, mitochondrial swelling, ATP/ADP ratio, lipid peroxidation, and mitochondrial complexes activity in rat heart isolated mitochondria. Herein, our results indicated a significant decrease in the activity of complex IV after exposure with celecoxib (16 µg/ml). This decrease in the activity of complex IV is paralleled by the MMP collapse, ROS formation, mitochondrial swelling, depletion of ATP, and lipid peroxidation. For the first time, this introductory study has shown a significant decrease in the activity of complex IV and mitochondrial dysfunction after exposure with celecoxib in rat heart isolated mitochondria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.