Parkinson disease (PD) is amongst the relatively prevalent neurodegenerative disorders with its course of progression classified as prodromal, stage1, 2, 3 and sever conditions. With all the shortcomings in clinical setting, it is often challenging to identify the stage of PD severity and predict its progression course. Therefore, there appear to be an ever-growing need need to use supervised and unsupervised artificial intelligence and machine learning methods on clinical and paraclinical datasets to accurately diagnose PD, identify its stage and predict its course. In today neuro-medicine practices, MRI-related data are regarded beneficial in detecting various pathologies in the brain. In addition, the field has recently witnessed a growing application of deep learning methods in image processing often with outstanding results. Here, we applied Convolutional Neural Networks (CNN) to propose a model helping to distinguish different stages of PD. The results showed that our current MRI-based CNN model may potentially be employed as a suitable method for the distinction of PD stages at a high accuracy rate (0.94).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.