[1] Surrogate modeling, also called metamodeling, has evolved and been extensively used over the past decades. A wide variety of methods and tools have been introduced for surrogate modeling aiming to develop and utilize computationally more efficient surrogates of high-fidelity models mostly in optimization frameworks. This paper reviews, analyzes, and categorizes research efforts on surrogate modeling and applications with an emphasis on the research accomplished in the water resources field. The review analyzes 48 references on surrogate modeling arising from water resources and also screens out more than 100 references from the broader research community. Two broad families of surrogates namely response surface surrogates, which are statistical or empirical data-driven models emulating the high-fidelity model responses, and lower-fidelity physically based surrogates, which are simplified models of the original system, are detailed in this paper. Taxonomies on surrogate modeling frameworks, practical details, advances, challenges, and limitations are outlined. Important observations and some guidance for surrogate modeling decisions are provided along with a list of important future research directions that would benefit the common sampling and search (optimization) analyses found in water resources.
Sensitivity analysis is an essential paradigm in Earth and Environmental Systems modeling.However, the term ''sensitivity'' has a clear definition, based in partial derivatives, only when specified locally around a particular point (e.g., optimal solution) in the problem space. Accordingly, no unique definition exists for ''global sensitivity'' across the problem space, when considering one or more model responses to different factors such as model parameters or forcings. A variety of approaches have been proposed for global sensitivity analysis, based on different philosophies and theories, and each of these formally characterizes a different ''intuitive'' understanding of sensitivity. These approaches focus on different properties of the model response at a fundamental level and may therefore lead to different (even conflicting) conclusions about the underlying sensitivities. Here we revisit the theoretical basis for sensitivity analysis, summarize and critically evaluate existing approaches in the literature, and demonstrate their flaws and shortcomings through conceptual examples. We also demonstrate the difficulty involved in interpreting ''global'' interaction effects, which may undermine the value of existing interpretive approaches. With this background, we identify several important properties of response surfaces that are associated with the understanding and interpretation of sensitivities in the context of Earth and Environmental System models. Finally, we highlight the need for a new, comprehensive framework for sensitivity analysis that effectively characterizes all of the important sensitivity-related properties of model response surfaces.
Computer simulation models are continually growing in complexity with increasingly more factors to be identified. Sensitivity Analysis (SA) provides an essential means for understanding the role and importance of these factors in producing model responses. However, conventional approaches to SA suffer from (1) an ambiguous characterization of sensitivity, and (2) poor computational efficiency, particularly as the problem dimension grows. Here, we present a new and general sensitivity analysis framework (called VARS), based on an analogy to ''variogram analysis,'' that provides an intuitive and comprehensive characterization of sensitivity across the full spectrum of scales in the factor space. We prove, theoretically, that Morris (derivative-based) and Sobol (variance-based) methods and their extensions are special cases of VARS, and that their SA indices can be computed as by-products of the VARS framework. Synthetic functions that resemble actual model response surfaces are used to illustrate the concepts, and show VARS to be as much as two orders of magnitude more computationally efficient than the state-of-the-art Sobol approach. In a companion paper, we propose a practical implementation strategy, and demonstrate the effectiveness, efficiency, and reliability (robustness) of the VARS framework on real-data case studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.