The rapid shrinkage of Lake Urmia, one of the world's largest saline lakes located in northwestern Iran, is a tragic wake-up call to revisit the principles of water resources management based on the socio-economic and environmental dimensions of sustainable development. The overarching goal of this paper is to set a framework for deriving dynamic, climate-informed environmental inflows for drying lakes considering both meteorological/climatic and anthropogenic conditions. We report on the compounding effects of meteorological drought and unsustainable water resource management that contributed to Lake Urmia's contemporary environmental catastrophe. Using rich datasets of hydrologic attributes, water demands and withdrawals, as well as water management infrastructure (i.e. reservoir capacity and operating policies), we provide a quantitative assessment of the basin's water resources, demonstrating that Lake Urmia reached a tipping point in the early 2000s. The lake level failed to rebound to its designated ecological threshold (1274 m above sea level) during a relatively normal hydro-period immediately after the drought of record (1998)(1999)(2000)(2001)(2002). The collapse was caused by a marked overshoot of the basin's hydrologic capacity due to growing anthropogenic drought in the face of extreme climatological stressors. We offer a dynamic environmental inflow plan for different climate conditions (dry, wet and near normal), combined with three representative water withdrawal scenarios. Assuming effective implementation of the proposed 40% reduction in the current water withdrawals, the required environmental inflows range from 2900 million cubic meters per year (mcm yr −1 ) during dry conditions to 5400 mcm yr −1 during wet periods with the average being 4100 mcm yr −1 . Finally, for different environmental inflow scenarios, we estimate the expected recovery time for re-establishing the ecological level of Lake Urmia.
Using publicly-available average monthly groundwater level data in 478 sub-basins and 30 basins in Iran, we quantify country-wide groundwater depletion in Iran. Natural and anthropogenic elements affecting the dynamics of groundwater storage are taken into account and quantified during the period of 2002–2015. We estimate that the total groundwater depletion in Iran to be ~ 74 km3 during this period with highly localized and variable rates of change at basin and sub-basin scales. The impact of depletion in Iran’s groundwater reserves is already manifested by extreme overdrafts in ~ 77% of Iran’s land area, a growing soil salinity across the entire country, and increasing frequency and extent of land subsidence in Iran’s planes. While meteorological/hydrological droughts act as triggers and intensify the rate of depletion in country-wide groundwater storage, basin-scale groundwater depletions in Iran are mainly caused by extensive human water withdrawals. We warn that continuation of unsustainable groundwater management in Iran can lead to potentially irreversible impacts on land and environment, threatening country’s water, food, socio-economic security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.