The problem of coalescence-induced self-propelled jumping of droplet is studied using three-dimensional numerical simulation. The focus is on the effect of inertia and in particular the effect of air density on the behavior of the merged droplet during jumping. A lattice Boltzmann method is used for two identical, static micro-droplets coalescing on a homogeneous substrate with contact angle ranging from 0 • to 180 •. The results reveal that the effect of air density is significant on detachment of the merged droplet from the substrate at the later stage of the jumping process; the larger the air density, the larger the jumping height of the droplet. Analysis of streamlines and vorticity contours is performed for density ratios ranging from 60 to 800. These show a generation of vortical structures inside and around the droplet. The intensity of these structures gets weaker after droplet departure as the air inertia is decreased. The results are also presented in terms of phase diagrams of the merged droplet jumping for different Ohnesorge numbers (Oh) and surface wettabilities for both small and large density ratios. The critical value of contact angle where the merged droplet jumps away from the substrate is independent of density ratio and has a value around 150 •. However, the critical value of Oh depends on both density ratio and wettability of the surface for contact angles greater than 150 •. In this range of contact angle, the diagrams show two distinct dynamical regimes for different density ratios, namely, inertial and viscous regimes.
The impact of microscopic liquid drops on solids with a variety of surface characteristics is studied using numerical simulations. The focus is on relatively low impact velocities leading to bouncing or spreading drops, and the effects of wettability. Molecular dynamics and lattice Boltzmann simulation methods are used for nanometer-sized and continuum drops, respectively, and the results of the two methods are compared in terms of scaled variables. We consider surfaces which are flat, curved or pillared, with either homogeneous interactions or cross-shaped patterns of wettability. In most situations we observe similar drop behavior at both length scales; the two methods agree best at low impact velocities on wettable surfaces while discrepancies are most pronounced for strongly hydrophobic surfaces and for higher velocities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.