This paper presents the results of an experimental investigation into the thermal and aerodynamic behavior of coolant ejection at the leading edge of a highly loaded nozzle vane cascade. The leading-edge cooling scheme features four rows of cylindrical holes in a staggered configuration (showerhead). Pressure Sensitive Paints (PSP) technique was used to get the adiabatic film cooling effectiveness distribution, while Particle Image Velocimetry (PIV) and flow visualizations were used to investigate the mixing process taking place between coolant and main flow. PSP tests were conducted by using N2 (Density Ratio DR=1.0) as coolant at variable blowing ratio (BR=2.0-4.0). Further tests were run by using CO2 (DR=1.5) at matching BR and momentum flux ratio (I) in order to investigate the effects of density ratio. The BR = 3.0 injection case was selected for the PIV investigation. Thermal and flow field data consistently show a shift in the position of stagnation line towards the suction side. Jet liftoff close to stagnation and a strong jet to jet as well as jet to mainstream interaction were also observed, resulting in a complex 3D flow characterized by high turbulence levels with a high degree of anisotropy. No coherent structures were detected, supporting the random nature of mixing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.