The world is naturally radioactive and approximately 82% of human-absorbed radiation doses, which are out of control, arise from natural sources such as cosmic, terrestrial, and exposure from inhalation or intake radiation sources. In recent years, several international studies have been carried out, which have reported different values regarding the effect of background radiation on human health. Gamma radiation emitted from natural sources (background radiation) is largely due to primordial radionuclides, mainly 232Th and 238U series, and their decay products, as well as 40K, which exist at trace levels in the earth's crust. Their concentrations in soil, sands, and rocks depend on the local geology of each region in the world. Naturally occurring radioactive materials generally contain terrestrial-origin radionuclides, left over since the creation of the earth. In addition, the existence of some springs and quarries increases the dose rate of background radiation in some regions that are known as high level background radiation regions. The type of building materials used in houses can also affect the dose rate of background radiations. The present review article was carried out to consider all of the natural radiations, including cosmic, terrestrial, and food radiation.
The effects of external GHz electric fields on the mechanical properties of a microtubule (MT) have been modeled through the application of a molecular dynamics simulation method. To explore the properties of the MT, two different systems each consisting of a pair of dimers were exposed to an 0.03 V/nm electric field with a frequency ranging between 1 to 10 GHz. It was found that the Young's modulus of each system, which is related to the flexibility of the MT, was lower at some frequencies and higher at others in comparison with normal biological conditions. Hence, the application of such an electric field with a frequency in this range may affect MT function, which could have positive or negative effects on cell health. Positive effects include its potential use in cancer treatment, where the application of such a field could lead to a decrease in MT rigidity, similar to the effect of Taxol on MTs. Negative effects include unwanted changes to the mechanical properties of MTs (e.g., disturbing the cell division process and in turn increasing the risk of cancer) upon the application of such a field.
Using molecular dynamics simulation method, the effects of external electric fields of 900[Formula: see text]MHz and 2450 frequencies on [Formula: see text]-tubulin dimer stabilized by paclitaxel, have been modeled. Due to this purpose, two systems, (A) [Formula: see text]-tubulin dimer and (B) [Formula: see text]-tubulin dimer stabilized by paclitaxel, were exposed to an external electric field of 0.01[Formula: see text]V/nm with frequency values of 900[Formula: see text]MHz and 2450[Formula: see text]MHz. It was found that application of these fields, which are in the range of cell phone and microwave frequencies, increased the flexibility of each system. Since paclitaxel, as chemotherapy drug, is used to increase the rigidity of dimer, application of such fields may disturb the effect of paclitaxel on the dimer. Consequently, negative side effects on the chemotherapy process may be observed.
Kinesin is a microtubule-associated motor protein which can respond to the external electric field due to its polarity. Using a molecular dynamics simulation method, the effect of such a field on the affinity of kinesin to the αβ-tubulin is investigated in this study. To consider kinesin affinity, the system is exposed to an electric field of 0.03 V/nm with frequency values of 1, 2, …, 9, and 10 GHz. It is found that the applied electric field can change kinesin affinity to the microtubule. These changes could perturb the normal operation of kinesin, such as the processive motility of kinesin on the microtubule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.