Trypanosoma cruzi (Kinetoplastea: Trypanosomatidae) infects all tissues of its hosts, which along with humans, include hundreds of mammalian species in the Americas. The epidemiology of T. cruzi has been changing in that currently the majority of the cases and/or outbreaks of Chagas disease occur by the ingestion of comestibles contaminated by T. cruzi metacyclic forms. These cases/outbreaks occur in distinct regional scenarios, mainly in the Amazon biome and are related to the local interaction mode of humans with their surroundings, as well as with the overall local ecological peculiarities. As trypanosomiasis caused by T. cruzi is primarily a zoonosis, understanding the variables that influences its transmission in the wild as well as the role played by the extant fauna in the maintenance of the parasite, is critical in establishing control measures. Here, we present the results of our studies of T. cruzi infection of free ranging wild mammalian fauna in the five biomes of Brazil, a country of continental dimensions. From 1992 up to 2017, we examined a total of 6587 free-ranging non-volant wild mammal specimens. Our studies found that 17% of mammals were seropositive and 8% of all animals displayed positive hemocultures indicative of high parasitemia and, consequently, of infectivity potential. We observed that opossums, mainly Philander spp. and Didelphis spp., the coati Nasua nasua, the capuchin monkey Sapajus libidinosus and the golden lion tamarin Leontopithecus rosalia, were mammal taxa that demonstrated higher rates of positive hemocultures. Additionally, Didelphis spp. demonstrated to be a competent bioaccumulator of TcI diversity. Chiroptera were distinguished for hosting the greatest diversity of species and genotypes of Trypanosoma spp. Additionally the observation of the higher host range of some Trypanosoma spp., shows the need to reassess the ecology of representatives of the taxon. Altogether, our results showed that each locality, may display distinct enzootiological and epidemiological scenarios that must be taken into account when it comes to establishing control and/or clarification campaigns of the local population.
A new epidemiological scenario involving the oral transmission of Chagas disease, mainly in the Amazon basin, requires innovative control measures. Geospatial analyses of the Trypanosoma cruzi transmission cycle in the wild mammals have been scarce. We applied interpolation and map algebra methods to evaluate mammalian fauna variables related to small wild mammals and the T. cruzi infection pattern in dogs to identify hotspot areas of transmission. We also evaluated the use of dogs as sentinels of epidemiological risk of Chagas disease. Dogs (n = 649) were examined by two parasitological and three distinct serological assays. kDNA amplification was performed in patent infections, although the infection was mainly sub-patent in dogs. The distribution of T. cruzi infection in dogs was not homogeneous, ranging from 11–89% in different localities. The interpolation method and map algebra were employed to test the associations between the lower richness in mammal species and the risk of exposure of dogs to T. cruzi infection. Geospatial analysis indicated that the reduction of the mammal fauna (richness and abundance) was associated with higher parasitemia in small wild mammals and higher exposure of dogs to infection. A Generalized Linear Model (GLM) demonstrated that species richness and positive hemocultures in wild mammals were associated with T. cruzi infection in dogs. Domestic canine infection rates differed significantly between areas with and without Chagas disease outbreaks (Chi-squared test). Geospatial analysis by interpolation and map algebra methods proved to be a powerful tool in the evaluation of areas of T. cruzi transmission. Dog infection was shown to not only be an efficient indicator of reduction of wild mammalian fauna richness but to also act as a signal for the presence of small wild mammals with high parasitemia. The lower richness of small mammal species is discussed as a risk factor for the re-emergence of Chagas disease.
We studied the prevalence of Trypanosoma cruzi infection among eight species of wild small mammals (n=289) in an area where human cases of infection/disease have occurred. Dogs (n=52) and goats (n=56) were also surveyed. The study was carried out inside a biological reserve, the National Park 'Serra da Capivara' and its surroundings in Piaui State, Brazil. The marsupial Didelphis albiventris and the caviomorph rodent Trichomys apereoides were found to be the most important reservoirs in the study area. Trichomys apereoides was the most abundant species (80%) and D. albiventris the most frequently infected (61%). Both T. cruzi I and T. cruzi II genotypes were isolated from these species. One specimen of Tr. apereoides displayed a mixed T. cruzi I/zymodeme 3 infection. Serum prevalence among dogs suggests that they may be involved in the maintenance of the parasite in the peridomestic environment, in contrast to goats, which are not apparently of any epidemiological importance. The distinct distribution and patterns of infection observed in the study areas suggest that even in the same biome, epidemiological studies or determination of control measures must take into account ecological peculiarities.
The presence of acute Chagas disease (ACD) due to oral transmission is growing and expanding in several South American countries. Within the Amazon basin, the Abaetetuba municipality has been a site of recurrent cases spanning across distinct landscapes. Because Chagas disease is primarily a zoonotic infection, we compared the enzootic Trypanosoma cruzi transmission cycles in three different environmental areas of Abaetetuba to better understand this new epidemiological situation. Philander opossum was the most abundant mammalian species collected (38% of the collected mammals) with a T. cruzi prevalence of 57%, as determined by hemocultures. Didelphis marsupialis was abundant only in the area with the higher level of environmental disturbance (approximately 42%) and did not yield detectable parasitemia. Despite similarities observed in the composition of the small mammalian fauna and the prevalence of T. cruzi infection among the studied areas, the potential of these hosts to infect vectors differed significantly according to the degree of land use (with prevalences of 5%, 41%, and 64% in areas A3, A1 and A2, respectively). Domestic mammals were also found to be infected, and one canine T. cruzi isolate was obtained. Our data demonstrated that the transmission of T. cruzi in the Amazon basin is far more complex than had been previously taught and showed that the probability of humans and domestic mammals coming into contact with infected bugs can vary dramatically, even within the same municipality. The exposure of dogs to T. cruzi infection (indicated by positive serology) was the common feature among the studied localities, stressing the importance of selecting domestic mammals as sentinels in the identification of T. cruzi transmission hotspots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.