Human Activity Recognition (HAR) refers to an emerging area of interest for medical, military, and security applications. However, the identification of the features to be used for activity classification and recognition is still an open point. The aim of this study was to compare two different feature sets for HAR. Particularly, we compared a set including time, frequency, and time-frequency domain features widely used in literature (FeatSet_A) with a set of time-domain features derived by considering the physical meaning of the acquired signals (FeatSet_B). The comparison of the two sets were based on the performances obtained using four machine learning classifiers. Sixty-one healthy subjects were asked to perform seven different daily activities wearing a MIMU-based device. Each signal was segmented using a 5-s window and for each window, 222 and 221 variables were extracted for the FeatSet_A and FeatSet_B respectively. Each set was reduced using a Genetic Algorithm (GA) simultaneously performing feature selection and classifier optimization. Our results showed that Support Vector Machine achieved the highest performances using both sets (97.1% and 96.7% for FeatSet_A and FeatSet_B respectively). However, FeatSet_B allows to better understand alterations of the biomechanical behavior in more complex situations, such as when applied to pathological subjects.
Surface electromyography (sEMG) is the main non-invasive tool used to record the electrical activity of muscles during dynamic tasks. In clinical gait analysis, a number of techniques have been developed to obtain and interpret the muscle activation patterns of patients showing altered locomotion. However, the body of knowledge described in these studies is very seldom translated into routine clinical practice. The aim of this work is to analyze critically the key factors limiting the extensive use of these powerful techniques among clinicians. A thorough understanding of these limiting factors will provide an important opportunity to overcome limitations through specific actions, and advance toward an evidence-based approach to rehabilitation based on objective findings and measurements.
The aim of our study was to develop and validate a machine learning algorithm to predict response of individual HER2-amplified colorectal cancer liver metastases (lmCRC) undergoing dual HER2-targeted therapy. Twenty-four radiomics features were extracted after 3D manual segmentation of 141 lmCRC on pretreatment portal CT scans of a cohort including 38 HER2-amplified patients; feature selection was then performed using genetic algorithms. lmCRC were classified as nonresponders (R−), if their largest diameter increased more than 10% at a CT scan performed after 3 months of treatment, responders (R+) otherwise. Sensitivity, specificity, negative (NPV) and positive (PPV) predictive values in correctly classifying individual lesion and overall patient response were assessed on a training dataset and then validated on a second dataset using a Gaussian naïve Bayesian classifier. Per-lesion sensitivity, specificity, NPV and PPV were 89%, 85%, 93%, 78% and 90%, 42%, 73%, 71% respectively in the testing and validation datasets. Per-patient sensitivity and specificity were 92% and 86%. Heterogeneous response was observed in 9 of 38 patients (24%). Five of nine patients were carriers of nonresponder lesions correctly classified as such by our radiomics signature, including four of seven harboring only one nonresponder lesion. The developed method has been proven effective in predicting behavior of individual metastases to targeted treatment in a cohort of HER2 amplified patients. The model accurately detects responder lesions and identifies nonresponder lesions in patients with heterogeneous response, potentially paving the way to multimodal treatment in selected patients. Further validation will be needed to confirm our findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.