Summary
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease. CAV1 and CAV2 organize membrane lipid rafts (MLRs) important for cell signaling and neuronal survival, and overexpression of CAV1 ameliorates ALS phenotypes
in vivo
. Genome-wide association studies localize a large proportion of ALS risk variants within the non-coding genome, but further characterization has been limited by lack of appropriate tools. By designing and applying a pipeline to identify pathogenic genetic variation within enhancer elements responsible for regulating gene expression, we identify disease-associated variation within
CAV1/CAV2
enhancers, which replicate in an independent cohort. Discovered enhancer mutations reduce
CAV1/CAV2
expression and disrupt MLRs in patient-derived cells, and CRISPR-Cas9 perturbation proximate to a patient mutation is sufficient to reduce
CAV1/CAV2
expression in neurons. Additional enrichment of ALS-associated mutations within
CAV1
exons positions
CAV1
as an ALS risk gene. We propose
CAV1/CAV2
overexpression as a personalized medicine target for ALS.
Diabetes mellitus-induced hyperglycemia is associated with a number of pathologies such as retinopathy, nephropathy, delayed wound healing, and diabetic peripheral neuropathy (DPN). Approximately 50% of patients with diabetes mellitus will develop DPN, which is characterized by disrupted sensory and/or motor functioning, with treatment limited to pain management. Zebrafish ( Danio rerio) are an emerging animal model used to study a number of metabolic disorders, including diabetes. Diabetic retinopathy, nephropathy, and delayed wound healing have all been demonstrated in zebrafish. Recently, our laboratory has demonstrated that following the ablation of the insulin-producing β-cells of the pancreas (and subsequent hyperglycemia), the peripheral nerves begin to show signs of dysregulation. In this study, we take a different approach, taking advantage of the transdermal absorption abilities of zebrafish larvae to extend the period of hyperglycemia. Following 5 days of 60 mM d-glucose treatment, we observed motor axon defasciculation, disturbances in perineurial glia sheath formation, decreased myelination of motor axons, and sensory neuron mislocalization. This study extends our understanding of the structural changes of the peripheral nerve following induction of hyperglycemia and does so in an animal model capable of potential DPN drug discovery in the future. NEW & NOTEWORTHY Zebrafish are emerging as a robust model system for the study of diabetic complications such as retinopathy, nephropathy, and impaired wound healing. We present a novel model of diabetic peripheral neuropathy in zebrafish in which the integrity of the peripheral nerve is dysregulated following the induction of hyperglycemia. By using this model, future studies can focus on elucidating the underlying molecular mechanisms currently unknown.
ABSTRACT:A series of stable breast cancer resistance protein (BCRP, ABCG2) knockdown cell lines were produced by transduction of Caco-2 cells with lentiviral vector-based short hairpin RNA (shRNA). Caco-2 cell is a human intestinal-derived cell line widely used to study intestinal drug absorption. Caco-2 expresses three apical drug efflux transporters: BCRP, P-glycoprotein (P-gp; ABCB1), and multidrug resistance protein 2 (MRP2, ABCC2). BCRP and P-gp in particular play a significant role in pharmacokinetics because of their expression at several key interfaces. Overexpression of BCRP in cancer cells may also be a mechanism of tumor resistance to chemotherapeutic drugs. The goal of this study was to engineer and characterize Caco-2 cell clones with stable knockdown of BCRP expression. The shRNA/BCRP lentiviral particles were used to infect a stable clone of Caco-2 cells. Expression of BCRP was monitored using quantitative polymerase chain reaction (qPCR), Western blotting, immunofluorescence microscopy, and bidirectional transport of probe substrates, estrone-3-sulfate (E3S), and pheophorbide A (PhA). Based on qPCR, expression of BCRP mRNA was knocked down in five clones with a maximum of 97% silencing in clone D. Silencing of BCRP gene expression was maintained for at least 25 passages. Expression of BCRP protein was also reduced significantly. Functionally, BCRP knockdown was reflected in significant reduction of the efflux ratio of E3S and PhA. Clone D in particular should be a useful model for identifying and characterizing P-gp substrates and inhibitors without interference from BCRP and/or MRP2. In addition, it can be used in conjunction with wild-type or vector control Caco-2 cells to identify BCRP substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.