Tangential flow filtration (TFF) and alternating tangential flow (ATF) filtration technologies using hollow fiber membranes are commonly utilized in perfusion cell culture for the production of monoclonal antibodies; however, product retention remains a known and common problem with these systems. To address this issue, commercially available hollow fibers ranging from several hundred kilo-Daltons (kDa) to 0.65 μm in nominal pore size were tested and were all demonstrated to undergo moderate to severe product retention. Further investigation revealed accumulation of particles in the same size range (approximately 20-200 nm) as the pores. Based on the assumption that these particles contribute to product retention and membrane plugging, a hollow fiber with an unconventionally larger pore size was subsequently identified and demonstrated to drastically reduce product retention with no impact to cell clarification, Furthermore, these hollow fibers demonstrated surprisingly high membrane capacities, making them an attractive solution to the problem of product retention in perfusion reactors.
Perfusion processes typically require removal of a continuous or semi-continuous volume of cell culture in order to maintain a desired target cell density. For fast growing cell lines, the product loss from this stream can be upwards of 35%, significantly reducing the overall process yield. As volume removed is directly proportional to cell growth, the ability to modulate growth during perfusion cell culture production thus becomes crucial. Leveraging existing media components to achieve such control without introducing additional supplements is most desirable because it decreases process complexity and eliminates safety and clearance concerns. Here, the impact of extracellular concentrations of sodium (Na) and potassium (K) on cell growth and productivity is explored. High throughput small-scale models of perfusion revealed Na:K ratios below 1 can significantly suppress cell growth by inducing cell cycle arrest in the G0/1 phase. A concomitant increase in cell specific productivity was also observed, reaching as high as 115 pg/cell/day for one cell line studied. Multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrated similar responses to lower Na:K media, indicating the universal applicability of such an approach. Product quality attributes were also assessed and revealed that effects were cell line specific, and can be acceptable or manageable depending on the phase of the drug development. Drastically altering Na and K levels in perfusion media as a lever to impact cell growth and productivity is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.