Centralized waste plastic recycling is economically challenging, yet distributed recycling and additive manufacturing (DRAM) offers a path that provides consumers with direct economic incentives to recycle. This study explores the technical pathways for DRAM of complex polymer composites using a case study of windshield wiper blades, which are a thermopolymer composite made up of a soft (flexible) and hard material. The distributed manufacturing methods ran from mechanical grinding to fused granular fabrication, heated syringe printing, 3-D printed molds coupled to injection molding and filament production in a recyclebot to fused filament fabrication. The particle size, angle of repose, thermal and rheological properties are characterized for the two sub-materials to define the conditions for the extrusion. A successful pathway was found and the mechanical properties of the resultant components were quantified.Finally, the means to convert scrap windshield wiper blades into useful, high-value, bespoke biomedical products of fingertip grips for hand prosthetic was demonstrated. This study showed that the DRAM model of materials recycling can be used to improve the variety of solutions for a circular economy.
This study describes the development of an automated bag valve mask (BVM) compression system, which, during acute shortages and supply chain disruptions can serve as a temporary emergency ventilator. The resuscitation system is based on the Arduino controller with a real-time operating system installed on a largely RepRap 3-D printable parametric component-based structure. The cost of the system is under $170, which makes it affordable for replication by makers around the world. The device provides a controlled breathing mode with tidal volumes from 100 to 800 milliliters, breathing rates from 5 to 40 breaths/minute, and inspiratory-to-expiratory ratio from 1:1 to 1:4. The system is designed for reliability and scalability of measurement circuits through the use of the serial peripheral interface and has the ability to connect additional hardware due to the object-oriented algorithmic approach. Experimental results demonstrate repeatability and accuracy exceeding human capabilities in BVM-based manual ventilation. Future work is necessary to further develop and test the system to make it acceptable for deployment outside of emergencies in clinical environments, however, the nature of the design is such that desired features are relatively easy to add with the test using protocols and parametric design files provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.