Mitochondrial DNA (mtDNA) encodes RNAs and proteins critical for cell function. In human cells, 100–1000s mtDNA copies are replicated asynchronously, packaged into protein-DNA nucleoids, and distributed within a dynamic mitochondrial network. The mechanisms that govern how nucleoids are chosen for replication and distribution are not understood. Mitochondrial distribution depends on division, which occurs at endoplasmic reticulum (ER)-mitochondria contact sites. These sites were spatially linked to a subset of nucleoids selectively marked by mtDNA polymerase and engaged in mtDNA synthesis, events that occurred upstream of mitochondrial constriction and division machine assembly. Our data suggest that ER tubules proximal to nucleoids were necessary but not sufficient for mtDNA synthesis. Thus, ER-mitochondria contacts coordinate licensing of mtDNA synthesis with division to distribute newly replicated nucleoids to daughter mitochondria.
Knowledge of mutation processes is central to understanding virtually all evolutionary phenomena and the underlying nature of genetic disorders and cancers. However, the limitations of standard molecular mutation detection methods have historically precluded a genomewide understanding of mutation rates and spectra in the nuclear genomes of multicellular organisms. We applied two high-throughput DNA sequencing technologies to identify and characterize hundreds of spontaneously arising base-substitution mutations in 10 Caenorhabditis elegans mutation-accumulation (MA)-line nuclear genomes. C. elegans mutation rate estimates were similar to previous calculations based on smaller numbers of mutations. Mutations were distributed uniformly within and among chromosomes and were not associated with recombination rate variation in the MA lines, suggesting that intragenomic variation in genetic hitchhiking and/or background selection are primarily responsible for the chromosomal distribution patterns of polymorphic nucleotides in C. elegans natural populations. A strong mutational bias from G/C to A/T nucleotides was detected in the MA lines, implicating oxidative DNA damage as a major endogenous mutagenic force in C. elegans. The observed mutational bias also suggests that the C. elegans nuclear genome cannot be at equilibrium because of mutation alone. Transversions dominate the spectrum of spontaneous mutations observed here, whereas transitions dominate patterns of allegedly neutral polymorphism in natural populations of C. elegans and many other animal species; this observation challenges the assumption that natural patterns of molecular variation in noncoding regions of the nuclear genome accurately reflect underlying mutation processes.high-throughput DNA sequencing ͉ mutation accumulation M utation is the fuel for evolution and the underlying cause of virtually all genetic diseases and cancers. Accurate knowledge of the rate and spectrum of base-substitution mutation is essential to studying and understanding a variety of evolutionary phenomena, including rates of molecular evolution (1), estimating the effective population size from standing levels of neutral genetic variation (2), and evaluating assumptions underlying common tests of selection on DNA sequence (1, 3). Despite the important roles of base-substitution mutations in evolutionary studies and their impact on human health, direct knowledge on genome-wide basesubstitution processes remains scarce. Because mutations occur extremely infrequently, the genomic rate and molecular spectrum of mutation have historically been indirectly inferred from either between-species divergence or standing genetic variation at loci thought to be evolving neutrally, or by extrapolation from estimates at a small handful of loci (4, 5). The former approach relies on the assumption of selective neutrality and might produce misleading results if the putatively neutral loci examined are in fact subject to selection or if the estimated times of divergence are inaccurate. The latt...
Coenzyme Q (CoQ) lipids are ancient electron carriers that, in eukaryotes, function in the mitochondrial respiratory chain. In mitochondria, CoQ lipids are built by an inner membrane–associated, multicomponent, biosynthetic pathway via successive steps of isoprenyl tail polymerization, 4-hydroxybenzoate head-to-tail attachment, and head modification, resulting in the production of CoQ. In yeast, we discovered that head-modifying CoQ pathway components selectively colocalize to multiple resolvable domains in vivo, representing supramolecular assemblies. In cells engineered with conditional ON or OFF CoQ pathways, domains were strictly correlated with CoQ production and substrate flux, respectively, indicating that CoQ lipid intermediates are required for domain formation. Mitochondrial CoQ domains were also observed in human cells, underscoring their conserved functional importance. CoQ domains within cells were highly enriched adjacent to ER–mitochondria contact sites. Together, our data suggest that CoQ domains function to facilitate substrate accessibility for processive and efficient CoQ production and distribution in cells.
We identify problematic areas throughout the Science, Technology, Engineering and Mathematics (STEM) pipeline that perpetuate racial disparities in academia. Distinct ways to curtail these disparities include early exposure and access to resources, supportive mentoring networks and comprehensive training programs specifically for racially minoritized students and trainees at each career stage. These actions will revitalize the STEM pipeline. ll
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.