Recent genetic evidence suggests that aberrant glycosphingolipid metabolism plays an important role in several neuromuscular diseases including hereditary spastic paraplegia, hereditary sensory neuropathy type 1, and non-5q spinal muscular atrophy. Here, we investigated whether altered glycosphingolipid metabolism is a modulator of disease course in amyotrophic lateral sclerosis (ALS). Levels of ceramide, glucosylceramide, galactocerebroside, lactosylceramide, globotriaosylceramide, and the gangliosides GM3 and GM1 were significantly elevated in spinal cords of ALS patients. Moreover, enzyme activities (glucocerebrosidase-1, glucocerebrosidase-2, hexosaminidase, galactosylceramidase, α-galactosidase, and β-galactosidase) mediating glycosphingolipid hydrolysis were also elevated up to threefold. Increased ceramide, glucosylceramide, GM3, and hexosaminidase activity were also found in SOD1 G93A mice, a familial model of ALS. Inhibition of glucosylceramide synthesis accelerated disease course in SOD1 G93A mice, whereas infusion of exogenous GM3 significantly slowed the onset of paralysis and increased survival. Our results suggest that glycosphingolipids are likely important participants in pathogenesis of ALS and merit further analysis as potential drug targets.A myotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by selective loss of motor neurons (MNs) within the CNS. Although our understanding of the genetic basis of ALS has advanced greatly in recent years (1), the adverse biological processes that converge on the neuromuscular axis to drive both MN death and neuropathological features in additional cell types remain largely unknown. Glycosphingolipids (GSLs) are a heterogeneous group of membrane lipids formed through the covalent linkage of a glycan moiety to ceramide (Cer; see SI Appendix, Fig. S1 for an overview of GSL metabolism). Glucosylceramide (GlcCer) and galactosylceramide (GalCer) are GSLs with a single sugar residue: glucose and galactose respectively. The successive addition of galactose and sialic acid moieties to GlcCer results in the synthesis of gangliosides (e.g., GM3, GM2, and GM1) (2). GSLs are especially abundant in the CNS and have bioactive roles in metabolism, growth factor signaling, oligodendrocyte differentiation, neuroinflammation, angiogenesis, and pathways of cell death (2-9)-all of which are thought to participate in ALS disease pathogenesis.Several lines of evidence suggest that aberrant changes in GSL homeostasis may contribute to disease pathogenesis in ALS. Evidence includes the detection of unique gangliosides (10), high titer serum auto-antibodies to GM2 and GM1 (11,12), and elevated GM2 levels within the motor cortex of ALS patients (13). Furthermore, a number of neuromuscular diseases are associated with mutations in genes that regulate the metabolism of Cer and GSLs. For example, hereditary sensory neuropathy type I (HSNT1), a disease that features dorsal root ganglion cell and MN degeneration, is attributed to mutations in serine...
Background: Reports of the use of multiplex enzyme assay screening for Pompe disease, Fabry disease, Gaucher disease, Niemann-Pick disease types A and B, and Krabbe disease have engendered interest in the use of this assay in newborn screening. We modified the assay for high-throughput use in screening laboratories. Methods: We optimized enzyme reaction conditions and procedures for the assay, including the concentrations of substrate (S) and internal standard (IS), assay cocktail compositions, sample clean-up procedures, and mass spectrometer operation. The S and IS for each enzyme were premixed and bottled at an optimized molar ratio to simplify assay cocktail preparation. Using the new S:IS ratio, we validated the modified assay according to CLSI guidelines. Stability of the S, IS, and assay cocktails were investigated. Dried blood spots from 149 healthy adults, 100 newborns, and 60 patients with a lysosomal storage disorder (LSD) were tested using the modified assay. Results: In our study, the median enzyme activity measured in adults was generally increased 2–3–fold compared to the original method, results indicating higher precision. In the multiplex format, each of the 5 modified enzyme assays enabled unambiguous differentiation between samples from healthy individuals (adults and newborns) and the corresponding disease-specific samples. Conclusions: The modified multiplex enzyme assay with premixed S and IS is appropriate for use in high-throughput screening laboratories.
Short-chain C6-sphingomyelin is an artificial substrate that was used in an acid sphingomyelinase activity assay for a pilot screening study of patients with Niemann–Pick disease types A and B. Using previously published multiplex and single assay conditions, normal acid sphingomyelinase activity levels (i.e. false negative results) were observed in two sisters with Niemann–Pick B who were compound heterozygotes for two missense mutations, p.C92W and p.P184L, in the SMPD1 gene. Increasing the sodium taurocholate detergent concentration in the assay buffer lowered the activity levels of these two patients into the range observed with other patients with clear separation from normal controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.