BackgroundPicea chihuahuana, which is endemic to Mexico, is currently listed as “Endangered” on the Red List. Chihuahua spruce is only found in the Sierra Madre Occidental (SMO), Mexico. About 42,600 individuals are distributed in forty populations. These populations are fragmented and can be classified into three geographically distinct clusters in the SMO. The total area covered by P. chihuahuana populations is less than 300 ha. A recent study suggested assisted migration as an alternative to the ex situ conservation of P. chihuahuana, taking into consideration the genetic structure and diversity of the populations and the predictions regarding the future climate of the habitat. However, detailed background information is required to enable development of plans for protecting and conserving species and for successful assisted migration. Thus, it is important to identify differences between populations in relation to environmental conditions. The genetic diversity of populations, which affect vigor, evolution and adaptability of the species, must also be considered. In this study, we examined 14 populations of P. chihuahuana, with the overall aim of discriminating the populations and form clusters of this species.MethodsEach population was represented by one 50 × 50 m plot established in the center of its respective location. Climate, soil, dasometric, density variables and genetic and species diversities were assessed in these plots for further analyses. The putatively neutral and adaptive AFLP markers were used to calculate genetic diversity. Affinity Propagation (AP) clustering technique and k-means clustering algorithm were used to classify the populations in the optimal number of clusters. Later stepwise binomial logistic regression was applied to test for significant differences in variables of the southern and northern P. chihuahuana populations. Spearman’s correlation test was used to analyze the relationships among all variables studied.ResultsThe binomial logistic regression analysis revealed that seven climate variables, the geographical longitude and sand proportion in the soil separated the southern from northern populations. The northern populations grow in more arid and continental conditions and on soils with lower sand proportion. The mean genetic diversity using all AFLP studied of P. chihuahuana was significantly correlated with the mean temperature in the warmest month, where warmer temperatures are associated to larger genetic diversity. Genetic diversity of P. chihuahuana calculated with putatively adaptive AFLP was not statistically significantly correlated with any environmental factor.DiscussionFuture reforestation programs should take into account that at least two different groups (the northern and southern cluster) of P. chihuahuana exist, as local adaptation takes place because of different environmental conditions.
<p><em>Cedrela odorata</em> (Meliaceae) is a native timber tree to Tropical America, known for its high-quality wood, unfortunately, plantations of this species are severely attacked by <em>Hypsipyla grandella</em>. The attraction or repellency of this pest is related to secondary metabolites such as phenols and limonoids (triterpenes); therefore, it is important to study these compounds to understand the phytochemical phenomena behind this problem. <em> </em>With this aim, the concentration of total phenols and limonoides was evaluated in <em>C. odorata</em> leaves from a plantation established in Tezonapa Veracruz, Mexico. For this, a total of 66 tree leaves samples, from seven sites, were analyzed. Phenols and limonoids concentration showed significant differences not only among different provenances, but also among individual trees of the same site (Tukey, p≤0.05). Phenols concentration was variable and in the range from 49 to 223mg EAG/g e for total phenols, from 7 to 158mg EC/g e for flavonoids and from 4 to 104mg EC/g e for proanthocyanidins. Limonoids concentration was also variable, ranging between 227 and 748mg EL/g e. A major compound was found by High-Performance Liquid Chromatography with Ultraviolet Diode Array Detection (HPLC-UV-DAD), which corresponded to a flavonol kaempferol glycoside derivative; additionally, a flavanol catechin was also detected at low concentrations. GC–MS allowed the identification of the sesquiterpenoids β-elemene, E-caryophyllene, aromadendrene, α-humulene, γ-cadinene, D-germacrene, bicyclogermacrene, and the poly terpenoids D-α-tocopherol and β-sitosterol. Our results suggest that the evaluation of phenols may play an important role as a selection parameter for improvement and conservation programs, if they are complemented with conventional breeding practices.</p>
Context Pinus herrerae and P. luzmariae are endemic to western Mexico, where they cover an area of more than 1 million hectares. Pinus herrerae is also cultivated in field trials in South Africa and South America, because of its considerable economic importance as a source of timber and resin. Seed quality, afforestation success and desirable traits may all be influenced by the presence of hybrid trees in seed stands. Aims We aimed to determine the degree of hybridization between P. herrerae and P. luzmariae in seed stands of each species located in the Sierra Madre Occidental, Durango, Mexico. Methods AFLP molecular markers from samples of 171 trees across five populations were analyzed with STRUCTURE and NewHybrids software to determine the degree of introgressive hybridization. The accuracy of STRUCTURE and NewHybrids in detecting hybrids was quantified using the software Hybridlab 1.0. Morphological analysis of 131 samples from two populations of P. herrerae and two populations of P. luzmariae was also conducted by Random Forest classification. The data were compared by Principal Coordinate Analysis (PCoA) in GenAlex 6.501. Results Hybridization between Pinus herrerae and P. luzmariae was observed in all seed stands under study and resulted in enhancement of desirable silvicultural traits in the latter species. In P. luzmariae, only about 16% molecularly detected hybrids correspond to those identified on a morphological basis. However, the morphology of P. herrerae is not consistent with the molecularly identified hybrids from one population and is only consistent with 3.3 of those from the other population. Conclusions This is the first report of hybrid vigour (heterosis) in Mexican pines. Information about hybridization and introgression is essential for developing effective future breeding programs, successful establishment of plantations and management of natural forest stands. Understanding how natural hybridization may influence the evolution and adaptation of pines to climate change is a cornerstone to sustainable forest management including adaptive silviculture.
Background.Picea chihuahuana, which is endemic to Mexico, is currently listed as "Endangered" on the Red List. Chihuahua spruce is only found in the Sierra Madre Occidental (SMO), Mexico. About 42,600 individuals are distributed in forty populations.The populations are fragmented and can be classified into three distinct clusters in the SMO of the two States (south, center and north), each group separated by a distance of about 300 km. The total area covered P. chihuahuana trees is less than 300 ha. A recent study suggested assisted migration as an alternative to the ex situ conservation of P. chihuahuana, taking into consideration the genetic structure and diversity of the populations and also predictions regarding the future climate of the habitat. However, detailed background information is required to enable development of plans for protecting and conserving species and for successful assisted migration. Thus, it is important to identify differences between populations in relation to environmental conditions. The vitality and genetic diversity of populations, which affect vigour, evolution and adaptability of the species, must also be considered. In this study, we examined the P. chihuahuana tree community growing in fourteen different locations, with the overall aim of discriminating the populations and clusters of this species using 22 climatic, 27 edaphic and 15 dasometric variables and three genetic diversity indices. Methods. relationships between genetic diversity, population size, and the climatic, soil and dasometric variables. Results. The discriminant analysis revealed 22 highly significant variables, which separated the southern, central and northern populations. The mean genetic diversity of P. chihuahuana was significantly correlated with the mean temperature in the warmest month. Genetic diversity of P. chihuahuana calculated with putative adaptive AFLP was not statistically significantly correlated with any environmental factor.Finally, no significant correlations were observed between any of the three genetic diversity indices and population size. Discussion. At least three different ecotypes of P. chihuahuana probably exist, as local adaptation may take place because of the different environmental conditions. Therefore, future reforestation programs should take into account these different ecotypes and environmental conditions.PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2677v1 | CC BY 4.0 Open Access | rec:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.