Recent advances in manipulating plasmonic properties of metal/semiconductor heterostructures have opened up new avenues for basic research and applications. Herein, we present a versatile strategy for the assembly of arrays...
The quest to control chromophore/semiconductor properties to enable new technologies in energy and information science requires detailed understanding of charge carrier dynamics at the atomistic level, which can often be attained through the use of model systems. Perylene-bridge-anchor compounds are successful models for studying fundamental charge transfer processes on TiO 2 , which remains among the most commonly investigated and technologically important interfaces, mostly because of perylene's advantageous electronic and optical properties. Nonetheless, the ability to fully exploit synthetically the substitution pattern of perylene with linker (= bridge-anchor) units remains little explored. Here we developed 2,5-di-tertbutylperylene (DtBuPe)-bridge-anchor compounds with t-Bu group substituents to prevent π-stacking and one or two linker units in both the peri and ortho positions, by employing a combination of Friedel−Crafts alkylations, bromination, iridium-catalyzed borylation, and palladium-catalyzed cross-coupling reactions. Photophysical characterization and computational analysis by density functional theory (DFT) and time-dependent DFT (TD-DFT) were carried out on four DtBuPe acrylic acid derivatives with a single or a double linker in peri (12b), ortho (15b), peri,peri (18b), and ortho,ortho (21b). The energies of the unoccupied orbitals {LUMO, LUMO + 1, LUMO + 2} are strongly affected by the presence of a π-conjugated linker, resulting in a stabilization of these states and a red shift of their absorption and emission spectra, as well as the loss of vibronic structure in the spectrum of the peri,peri compound, consistent with the strong bonding character of this substitution pattern.
Neutral and deprotonated anionic Ni(II), Pd(II), Cu(II), and Cu(III) complexes of tetrakis(perfluorophenyl)-N-confused porphyrin (PF-NCP) were prepared and investigated by UV-visible and magnetic circular dichroism (MCD) spectroscopies. As in the previously reported Ni(II) adduct of tetraphenyl N-confused porphyrin, we observe sign reverse (positive to negative intensities with increasing energy) features in the MCD spectra of the neutral Ni(II), Pd(II), and Cu(II) complexes of PF-NCP, which is indicative of rare ΔHOMO < ΔLUMO relationships. Upon deprotonation of Ni(II), Pd(II), and Cu(II) complexes, these features revert to those of more typical porphyrin MCD spectra consistent with a ΔHOMO > ΔLUMO condition. The Cu(III) PF-NCP complex shows features similar to those of the deprotonated divalent metal systems. Spectroscopic features in all target complexes as well as previously published metal-free and Ni(II) NCP systems were correlated with the density functional theory (DFT) and time-dependent DFT (TDDFT) calculations. Calculation data are consistent with the tautomeric rearrangement of the electronic structures of NCP cores playing dominant roles, with smaller contribution from the central metal ions in the observed optical and magneto-optical properties. This is true for all described NCP systems to date, as they affect the stabilization/destabilization of the N-confused porphyrin-centered Gouterman orbitals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.