SUMMARYThe pitviper facial pit is a pinhole camera-like sensory organ consisting of a flask-shaped cavity divided into two chambers by a suspended membrane. Neurophysiological studies and simplified optical models suggest that facial pits detect thermal radiation and form an image that is combined with visual input in the optic tectum to form a single multispectral image. External pit anatomy varies markedly among taxonomic groups. However, optical function depends on unknown internal anatomy. Therefore, we developed methods for relating anatomy to optical performance. To illustrate, we constructed detailed anatomical models of the internal anatomy of the facial pits of four individuals of four pitviper species using X-ray tomography sections of fresh material. We used these models to define the point spread function, i.e. the distribution of radiation from a point source over the pit membrane, for each species. We then used optical physics, heat transfer physics and computational image processing to define the thermal image formed on the pit membrane for each species. Our computed pit membrane images are consistent with behavioral observations if the sensitivity of membrane receptors equals the most sensitive (ca. 0.001°C) laboratory estimates. Vignetting (variation in optical aperture size with view angle) and differences between body and environmental temperatures can create temperature variation across the membrane that greatly exceeds image temperature contrasts, potentially impairing imaging. Spread functions plotted versus source point azimuth and elevation show distinct patterns that suggest new research directions into the relationships among the optical anatomy, ecology, behavior and sensory neurophysiology of pitvipers. Supplementary material available online at
SUMMARYRecent work published in the accompanying paper used a combination of 3D morphological reconstruction to define optical spread functions and heat transfer physics to study how external heat energy would reach the sensory membrane within the facial pit of pitvipers. The results from all of the species examined indicated asymmetric directional sensitivity, e.g. the pit would preferentially respond to stimuli located below and behind the snake. The present study was intended as a test of these findings through a quantitative neurophysiological analysis of directional sensitivity in the facial pit of the western diamondback rattlesnake, Crotalus atrox. An infrared emitter was positioned through a coordinate system (with varying angular orientations and distances) and the response it evoked measured through neurophysiological recordings of a trigeminal nerve branch composed of the afferents from the sensory membrane of the facial pit. Significant differences were found in the strength of the membraneʼs neural response to a constant stimulus presented at different orientations (relative to the facial pit opening) and over different distances. The peak sensitivity (at 12deg above and 20deg in front of the facial pit opening) was in good agreement with the predicted directional sensitivities based on optical spread functions and 3D topography. These findings support the hypothesis that the topography, and functional performance, of the facial pit has undergone an adaptive radiation within the pit vipers, and that differences in the behavioral ecology of the pit vipers (i.e. terrestrial versus arboreal) are reflected within the facial pits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.