Background Weakness is a common clinical symptom reported in individuals with chronic alcohol use disorder. However, it remains unclear whether low strength in these individuals is directly related to excessive ethanol intake, other deleterious factors (lifestyle, environment, genetics, etc.), or a combination of both. Therefore, we examined whether (and how) ethanol reduces the muscle’s force‐producing capacity using a controlled in vivo preclinical mouse model of excessive ethanol intake. Methods To establish whether chronic ethanol consumption causes weakness, C57BL/6 female mice consumed 20% ethanol for 40 weeks (following a 2‐week ethanol ramping period), and various measures of muscular force were quantified. Functional measures included all‐limb grip strength and in vivo contractility of the left ankle dorsiflexors and plantarflexors. Once confirmed that mice consuming ethanol were weaker than age‐matched controls, we sought to determine the potential neuromuscular mechanisms of muscle dysfunction by assessing neuromuscular excitation, muscle quantity, and muscle quality. Results Mice consuming chronic ethanol were 13 to 16% weaker (p ≤ 0.016) than controls (i.e., mice consuming 100% water) with the negative impact of ethanol on voluntary grip strength (ƞ2 = 0.603) being slightly larger than that of electrically stimulated muscle contractility (ƞ2 = 0.482). Relative to controls, lean mass and muscle wet masses were 9 to 16% lower in ethanol‐consuming mice (p ≤ 0.048, ƞ2 ≥ 0.268). No significant changes were observed between groups for indices of neuromuscular excitation at the level of the motor unit, neuromuscular junction, or plasmalemma (p ≥ 0.259, ƞ2 ≤ 0.097), nor was muscle quality altered after 40 weeks of 20% ethanol consumption (p ≥ 0.695, ƞ2 ≤ 0.012). Conclusions Together, these findings establish that chronic ethanol consumption in mice induces a substantial weakness in vivo that we interpret to be primarily due to muscle atrophy (i.e., reduced muscle quantity) and possibly, to a lesser degree, loss of central neural drive.
Alcoholics develop muscle atrophy and weakness from excessive ethanol (EtOH) intake. To date, most research has examined outcomes of alcohol-induced atrophy and weakness under basal or unstressed conditions despite physical stress being a normal occurrence in a physiological setting. Therefore, this study set out to determine if recovery of torque is impaired after repetitive bouts of physical stress in skeletal muscle during excessive short-term (experiment 1) and long-term (experiment 2) EtOH consumption. Methods: Twenty male and female mice were assigned to receive either 20% EtOH in their drinking water or 100% water. Short-and long-term consumption was predetermined to be EtOH intake starting at 4 and 26 wk, respectively. Anterior crural muscles performed repeated bouts of physical stress using in vivo eccentric contractions, with tetanic isometric torque being measured immediately pre-and postinjury. A total of 10 bouts were completed with 14 d between each bout within bouts 1-5 (experiment 1) and bouts 6-10 (experiment 2), and 12 wk between bouts 5 and 6. Results: Mice consuming EtOH had blood alcohol concentrations up to 270 mg•dL −1 . In experiment 1, five bouts of eccentric contractions did not reduce recovery of torque, regardless of sex or EtOH treatment (P ≥ 0.173). Similarly, in experiment 2, preinjury torques did not differ from day 14 values regardless of sex or treatment (P ≥ 0.322). However, there was a group effect in female mice for bouts 6 and 10 during experiment 2, with female EtOH mice being weaker than controls (P ≤ 0.002). Conclusions: Excessive short-or long-term EtOH misuse in a mouse model did not affect the muscle's ability to regain strength after repeated bouts of eccentric contractions, suggesting that EtOH may not be as detrimental to recovery as once predicted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.