This account describes our laboratory’s efforts in the development of a palladium-catalyzed asymmetric conjugate addition of arylboronic acids to cyclic conjugate acceptors. Specifically, we highlight the study of this transformation in the following areas: (a) construction of all-carbon quaternary stereocenters, (b) elucidation of the reaction mechanism, (c) addition to heterocyclic acceptors to generate tertiary stereocenters, and (d) application in the synthesis of natural products.
The first highly enantioselective iridium-catalyzed allylic alkylation providing access to products bearing an allylic all-carbon quaternary stereogenic center has been developed. The reaction utilizes a masked acyl cyanide (MAC) reagent, which enables the one-pot preparation of α-quaternary carboxylic acids, esters, and amides with a high degree of enantioselectivity. The utility of these products is further explored via a series of diverse product transformations.
The development of the first enantioselective transition-metal-catalyzed allylic alkylation providing access to acyclic products bearing vicinal all-carbon quaternary centers is disclosed. The iridium-catalyzed allylic alkylation reaction proceeds with excellent yields and selectivities for a range of malononitrile-derived nucleophiles and trisubstituted allylic electrophiles. The utility of these sterically congested products is explored through a series of diverse chemo- and diastereoselective product transformations to afford a number of highly valuable, densely functionalized building blocks, including those containing vicinal all-carbon quaternary stereocenters.
A catalytic, enantioselective
formal synthesis of (+)-dichroanone
and (+)-taiwaniaquinone H is reported. The all-carbon quaternary stereocenter
was constructed by asymmetric conjugate addition catalyzed by a palladium(II)
(S)-tert-butylpyridinooxazoline complex.
The unexpected formation of a [3.2.1] bicyclic intermediate required
the identification of a new route. Analysis of the Hammett constants
for para-substituted arenes enabled the rational
design of a highly enantioselective conjugate addition substrate that
led to the completion of the formal synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.