We present a year-round time series of dissolved methane (CH 4 ), along with targeted observations during ice melt of CH 4 and carbon dioxide (CO 2 ) in a river and estuary adjacent to Cambridge Bay, Nunavut, Canada. During the freshet, CH 4 concentrations in the river and ice-covered estuary were up to 240,000% saturation and 19,000% saturation, respectively, but quickly dropped by >100-fold following ice melt. Observations with a robotic kayak revealed that river-derived CH 4 and CO 2 were transported to the estuary and rapidly ventilated to the atmosphere once ice cover retreated. We estimate that river discharge accounts for >95% of annual CH 4 sea-to-air emissions from the estuary. These results demonstrate the importance of resolving seasonal dynamics in order to estimate greenhouse gas emissions from polar systems.Plain Language Summary The primary cause of recent global climate change is increasing concentrations of heat-trapping greenhouse gases in the atmosphere. Ongoing rapid Arctic climate change is affecting the annual cycle of sea ice formation and retreat; however, most published studies of greenhouse gases in Arctic waters have been conducted during ice-free, summertime conditions. In order to characterize seasonal variability in greenhouse gas distributions, we collected year-round measurements of the greenhouse gas methane (CH 4 ) in a coastal Arctic system near Cambridge Bay, Nunavut, Canada. We found that during the ice melt season, river water contains methane concentrations up to 2,000 times higher than the wintertime methane concentrations in the coastal ocean. We utilized a novel robotic kayak to conduct high-resolution mapping of greenhouse gas distributions during ice melt. From these data, we demonstrate that the river water containing elevated levels of methane and carbon dioxide (CO 2 ) flowed into the coastal ocean, and when ice cover melted, these greenhouse gases were rapidly emitted into the atmosphere. We estimate that in this system, more than 95% of all annual methane emissions from the estuary are driven by river inflow.
Studying carbon dioxide in the ocean helps to understand how the ocean will be impacted by climate change and respond to increasing fossil fuel emissions. The marine carbonate system is not well characterized in the Arctic, where challenging logistics and extreme conditions limit observations of atmospheric CO2 flux and ocean acidification. Here, we present a high-resolution marine carbon system data set covering the complete cycle of sea-ice growth and melt in an Arctic estuary (Nunavut, Canada). This data set was collected through three consecutive yearlong deployments of sensors for pH and partial pressure of CO2 in seawater (pCO2sw) on a cabled underwater observatory. The sensors were remarkably stable compared to discrete samples: While corrections for offsets were required in some instances, we did not observe significant drift over the deployment periods. Our observations revealed a strong seasonality in this marine carbon system. Prior to sea-ice formation, air–sea gas exchange and respiration were the dominant processes, leading to increasing pCO2sw and reduced aragonite saturation state (ΩAr). During sea-ice growth, water column respiration and brine rejection (possibly enriched in dissolved inorganic carbon, relative to alkalinity, due to ikaite precipitation in sea ice) drove pCO2sw to supersaturation and lowered ΩAr to < 1. Shortly after polar sunrise, the ecosystem became net autotrophic, returning pCO2sw to undersaturation. The biological community responsible for this early switch to autotrophy (well before ice algae or phytoplankton blooms) requires further investigation. After sea-ice melt initiated, an under-ice phytoplankton bloom strongly reduced aqueous carbon (chlorophyll-a max of 2.4 µg L–1), returning ΩAr to > 1 after 4.5 months of undersaturation. Based on simple extrapolations of anthropogenic carbon inventories, we suspect that this seasonal undersaturation would not have occurred naturally. At ice breakup, the sensor platform recorded low pCO2sw (230 µatm), suggesting a strong CO2 sink during the open water season.
Numerical modelling is used to investigate for the first time the interactions between a petroleum system and sill intrusion in the NE Sverdrup Basin, Canadian Arctic Archipelago. Although hydrocarbon exploration has been successful in the western Sverdrup Basin, the results in the NE part of the basin have been disappointing, despite the presence of suitable Mesozoic source rocks, migration paths and structural/stratigraphic traps, many involving evaporites. This was explained by (i) the formation of structural traps during basin inversion in the Eocene, after the main phase of hydrocarbon generation, and/or (ii) the presence of evaporite diapirs locally modifying the geothermal gradient, leading to thermal overmaturity of hydrocarbons. This study is the first attempt at modelling the intrusion of Cretaceous sills in the east-central Sverdrup Basin, and to investigate how they may have affected the petroleum system.A one-dimensional numerical model, constructed using PetroMod9.0 ® , investigates the effects of rifting and magmatic events on the thermal history and on petroleum generation at the Depot Point eastern Axel Heiberg Island (79 o 23'40"N, 85 o 44'22"W). The thermal history is constrained by vitrinite reflectance and fission-track data, and by the tectonic history. The simulation identifies the time intervals during which hydrocarbons were generated, and illustrates the interplay between hydrocarbon production and igneous activity at the time of sill intrusion during the Early Cretaceous. The comparison of the petroleum and magmatic systems in the context of previously proposed models of basin evolution and renewed tectonism was an essential step in the interpretation of the results from the Depot Point L-24 well.The model results show that an episode of minor renewed rifting and widespread sill intrusion in the Early Cretaceous occurred after hydrocarbon generation ceased at about 220 Ma in the Hare Fiord and Van Hauen Formations. We conclude that the generation potential of these deeper formations in the eastern Sverdrup Basin was not likely to have been affected by the intrusion of mafic sills during the Early Cretaceous. However, the model suggests that in shallower source rocks such as the Blaa Mountain Formation, rapid generation of natural gas occurred at 125 Ma, contemporaneous with tectonic rejuvenation and sill intrusion in the east-central Sverdrup Basin. A sensitivity study shows that the emplacement of sills increased the hydrocarbon generation rates in the Blaa Mountain Formation, and facilitated the production of gas rather than oil. INTRODUCTIONExploration geologists commonly develop numerical models based on source-rock properties such as thickness, thermal conductivity, porosity, permeability,
Abstract. The carbonate chemistry of sea ice is known to play a role in global carbon cycles, but its importance is uncertain in part due to disparities in reported results. Variability in physical and biological drivers is usually invoked to explain differences between studies. In the Canadian Arctic Archipelago, “invisible polynyas” – areas of strong currents, thin ice, and potentially high biological productivity – are examples of extreme spatial variability. We used an invisible polynya as a natural laboratory to study the effects of inferred initial ice formation conditions, ice growth rate, and algal biomass on the distribution of carbonate species by collecting enough cores to perform a statistical comparison between sites located within, and just outside of, a polynya near Iqaluktuttiaq (Cambridge Bay, Nunavut, Canada). At both sites, the uppermost 10 cm ice horizon showed evidence of CO2 off-gassing, while carbonate distributions in the middle and bottommost 10 cm horizons largely followed the salinity distribution. In the polynya, the upper ice horizon had significantly higher bulk total inorganic carbon (TIC), total alkalinity (TA), and salinity potentially due to freeze-up conditions that favoured frazil ice production. The middle ice horizons were statistically indistinguishable between sites, suggesting that ice growth rate is not an important factor for the carbonate distribution under mid-winter conditions. The thicker (non-polynya) site experienced higher algal biomass, TIC, and TA in the bottom horizon. Carbonate chemistry in the bottom horizon could largely be explained by the salinity distribution, with the strong currents at the polynya site potentially playing a role in desalinization; biology appeared to exert only a minor control, with some evidence that the ice algae community was net heterotrophic. We did see evidence of calcium carbonate precipitation but with little impact on the TIC:TA ratio and little difference between sites. Because differences were constrained to relatively thin layers at the top and bottom, vertically averaged values of TIC, TA, and especially the TIC:TA ratio were not meaningfully different between sites. This provides some justification for using a single bulk value for each parameter when modelling sea ice effects on ocean chemistry at coarse resolution. Exactly what value to use (particularly for the TIC:TA ratio) likely varies by region but could potentially be approximated from knowledge of the source seawater and sea ice salinity. Further insights await a rigorous intercomparison of existing data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.