Using an adaptation of the Attentional Networks Test, we investigated aspects of executive control in children with chromosome 22q11.2 deletion syndrome (DS22q11.2), a common but not well understood disorder that produces non-verbal cognitive deficits and a marked incidence of psychopathology. The data revealed that children with DS22q11.2 demonstrated greater difficulty than controls in locating and processing target items in the presence of distracters. Importantly, children with DS22q11.2 showed a deficit in the ability to monitor and adapt to stimulus conflict. These data provide evidence of inadequate conflict adaptation in children with DS22q11.2, a problem that is also present in schizophrenia. The findings of specific executive dysfunction in this group may provide a linkage between particular genetic abnormalities and the development of psychopathology.
We present a multilevel approach to developing potential explanations of cognitive impairments and psychopathologies common to individuals with chromosome 22q11.2 deletion syndrome. Results presented support our hypothesis of posterior parietal dysfunction as a central determinant of characteristic visuospatial and numerical cognitive impairments. Converging data suggest that brain development anomalies, primarily tissue reductions in the posterior brain and changes to the corpus callosum, may affect parietal connectivity. Further findings indicate that dysfunction in "frontal" attention systems may explain some executive cognition impairments observed in affected children, and that there may be links between these domains of cognitive function and some of the serious psychiatric conditions, such as attention-deficit/hyperactivity disorder, autism, and schizophrenia, that have elevated incidence rates in the syndrome. Linking the neural structure and the cognitive processing levels in this way enabled us to develop an elaborate structure/function mapping hypothesis for the impairments that are observed. We show also, that in the case of the catechol-Omethyltransferase gene, a fairly direct relationship between gene expression, cognitive function, and psychopathology exists in the affected population. Beyond that, we introduce the idea that variation in other genes may further explain the phenotypic variation in cognitive function and possibly the anomalies in brain development.In recent years, a great deal has been learned about a disorder that is one of the most common genetic causes of developmental disability, mental retardation, and psychopathology. Resulting from a 1.5-to 3-Mb microdeletion on the long (q) arm of chromosome 22 , this disorder is most accurately characterized as the "chromosome 22q11.2 deletion syndrome" (DS22q11.2). Thus defined, the disorder encompasses previously described phenotypes including DiGeorge (1965), velocardiofacial (Shprintzen, Goldberg, Lewin, Sidoti, Berkman, Argamaso, & Young, 1978, and conotruncal anomaly face (Burn, Takao, Wilson, Cross, Momma, Wadey, Scambler, & Goodship, 1993) syndromes, and some cases of Cayler cardiofacial syndrome (Giannotti, Digilio, Marino, Mingarelli, & Dallapiccola, 1994) and Opitz G/BBB syndrome (McDonald-McGinn, Driscoll, Bason, Christensen, Lynch, Sullivan, Canning, Zavod, Quinn, & Rome, 1995). A molecular fluorescence in situ hybridization probe for the deletion set the prevalence at 1 in 4,000 live (Burn & Goodship, 1996), an estimate currently thought to be quite conservative (e.g., Shashi, Muddasani, Santos, Berry, Kwapil, Lewandowski, & Keshavan, 2004). Furthermore, several factors point to a significant growth in the identified population of individuals with DS22q11.2 in the near future. One is that the major cause for mortality in the syndrome, congenital heart defects, is now routinely resolved surgically. Another is that, because this is a contiguous gene deletion syndrome with no effect on reproductive fitness, adults with...
Children with chromosome 22q11.2 deletion syndrome (22q) suffer from physical and behavioral dysfunctions, including neuroanatomical anomalies, visuo-spatial processing deficits, and increased risk for psychopathology. Reduced total brain volume, parietal lobe volume, and cerebellar volumes, enlarged ventricles, and increased basal ganglia volumes have been reported. Since previous literature has related the pulvinar nucleus of the thalamus to visuo-spatial processing, we compared the thalamic volume in children with 22q to typically developing controls. Children with 22q showed a significant reduction of the thalamus compared with normally developing children, specifically in the posterior portion of the thalamus, including the pulvinar nucleus. These results provide the first evidence for a potential relationship between posterior thalamic reductions and the characteristic visuo-spatial deficits demonstrated in this group.
Youth with MS endorse recreational marijuana as safe, and many use marijuana frequently despite appreciating a negative impact on memory. More detailed understanding of the long-term impact of marijuana use in youth with MS is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.