Although the rapid development of therapeutic responses to combat SARS-CoV-2 represents a great human achievement, it also demonstrates untapped potential for advanced pandemic preparedness. Cross-species efficacy against multiple human coronaviruses by the main protease (MPro) inhibitor nirmatrelvir raises the question of its breadth of inhibition and our preparedness against future coronaviral threats. Herein, we describe sequence and structural analyses of 346 unique MPro enzymes from all coronaviruses represented in the NCBI Virus database. Cognate substrates of these representative proteases were inferred from their polyprotein sequences. We clustered MPro sequences based on sequence identity and AlphaFold2-predicted structures, showing approximate correspondence with known viral subspecies. Predicted structures of five representative MPros bound to their inferred cognate substrates showed high conservation in protease:substrate interaction modes, with some notable differences. Yeast-based proteolysis assays of the five representatives were able to confirm activity of three on inferred cognate substrates, and demonstrated that of the three, only one was effectively inhibited by nirmatrelvir. Our findings suggest that comprehensive preparedness against future potential coronaviral threats will require continued inhibitor development. Our methods may be applied to candidate coronaviral MPro inhibitors to evaluate in advance the breadth of their inhibition and identify target coronaviruses potentially meriting advanced development of alternative countermeasures.
Enzymes that catalyze post-translational modifications of peptides and proteins (PTM-enzymes) – proteases, protein ligases, oxidoreductases, kinases, and other transferases - are foundational to our understanding of health and disease and empower applications in chemical biology, synthetic biology, and biomedicine. To fully harness the potential of PTM-enzymes, there is a critical need to decipher their enzymatic and biological mechanisms, develop molecules that can probe and reprogram them, and endow them with improved and novel functions. These objectives are contingent upon implementation of high-throughput functional screens and selections that interrogate large sequence libraries to isolate desired PTM-enzyme properties. This review discusses the principles of S. cerevisiae organelle sequestration to study and engineer PTM-enzymes. These include methods that modify yeast surface display and employ enzyme-mediated transcription activation to evolve the activity and substrate specificity of proteases and protein ligases. We also present a detailed discussion of yeast endoplasmic reticulum (ER) sequestration for the first time. Where appropriate, we highlight the major features and limitations of different systems, specifically how they can measure and control enzyme catalytic efficiencies. Taken together, yeast-based high-throughput sequestration approaches significantly lower the barrier to understanding how PTM-enzymes function and how to reprogram them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.