Participants with the highest intake of low-fat dairy products had the lowest mortality risk score and exhibited the best LDL-C profile. Such favourable associations were not observed with cheese consumption.
Background
Chest pain is a frequent reason for calls in emergency medical communication centre (EMCC). Detecting a coronary origin by phone is a challenge. This is especially so as the presentations differ according to gender. We aimed to establish and validate a sex-based model to predict a coronary origin of chest pain in patients calling an EMCC.
Methods
This prospective cohort study enrolled patients at 18 years of age or older who called the EMCC because of non-traumatic chest pain. The main outcome was the diagnosis of acute coronary syndrome (ACS) determined by expert evaluation of patient files.
Results
During 18 months, 3727 patients were enrolled: 2097 (56%) men and 1630 (44%) women. ACS was diagnosed in 508 (24%) men and 139 (9%) women. For men, independent factors associated with an ACS diagnosis were age, tobacco use, severe and permanent pain; retrosternal, breathing non-related and radiating pain; and additional symptoms. The area under the receiver operating characteristic curve (AUC) was 0.76 (95% confidence interval [CI] 0.73–0.79) for predicting ACS. The accuracy of the male model to predict ACS was validated in a validation dataset (Hosmer-Lemeshow test: p = 0.554); the AUC was 0.77 (95%CI 0.73–0.80). For women, independent factors associated with an ACS diagnosis were age ≥ 60 years, personal history of coronary artery disease, and breathing non-related and radiating pain. The AUC was 0.79 (95%CI 0.75–0.83). The accuracy of the female model to predict ACS was not validated in the validation dataset (Hosmer-Lemeshow test: p = 0.035); the AUC was 0.67 (95%CI 0.60–0.74).
Conclusions
Predictors of an ACS diagnosis in patients calling an EMCC for chest pain differ between men and women. We developed an accurate predictive model for men, but for women, the accuracy was poor.
Trial registration
This study is registered with ClinicalTrials.gov (NCT02042209).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.