Leukemia stem cells (LSCs) initiate and sustain the acute myeloid leukemia (AML) clonal hierarchy and possess biological properties rendering them resistant to conventional chemotherapy. The poor survival of AML patients raises expectations that LSC-targeted therapies might achieve durable remissions. We report that an anti-interleukin-3 (IL-3) receptor alpha chain (CD123)-neutralizing antibody (7G3) targeted AML-LSCs, impairing homing to bone marrow (BM) and activating innate immunity of nonobese diabetic/severe-combined immunodeficient (NOD/SCID) mice. 7G3 treatment profoundly reduced AML-LSC engraftment and improved mouse survival. Mice with pre-established disease showed reduced AML burden in the BM and periphery and impaired secondary transplantation upon treatment, establishing that AML-LSCs were directly targeted. 7G3 inhibited IL-3-mediated intracellular signaling of isolated AML CD34(+)CD38(-) cells in vitro and reduced their survival. These results provide clear validation for therapeutic monoclonal antibody (mAb) targeting of AML-LSCs and for translation of in vivo preclinical research findings toward a clinical application.
Acute myeloid leukemia (AML) is a biologically heterogeneous group of related diseases in urgent need of better therapeutic options. Despite this heterogeneity, overexpression of the interleukin (IL)-3 receptor α-chain (IL-3 Rα/CD123) on both the blast and leukemic stem cell (LSC) populations is a common occurrence, a finding that has generated wide interest in devising new therapeutic approaches that target CD123 in AML patients. We report here the development of CSL362, a monoclonal antibody to CD123 that has been humanized, affinity-matured and Fc-engineered for increased affinity for human CD16 (FcγRIIIa). In vitro studies demonstrated that CSL362 potently induces antibody-dependent cell-mediated cytotoxicity of both AML blasts and CD34(+)CD38(-)CD123(+) LSC by NK cells. Importantly, CSL362 was highly effective in vivo reducing leukemic cell growth in AML xenograft mouse models and potently depleting plasmacytoid dendritic cells and basophils in cynomolgus monkeys. Significantly, we demonstrated CSL362-dependent autologous depletion of AML blasts ex vivo, indicating that CSL362 enables the efficient killing of AML cells by the patient's own NK cells. These studies offer a new therapeutic option for AML patients with adequate NK-cell function and warrant the clinical development of CSL362 for the treatment of AML.
Injuries to the vessel wall and subsequent exposure of collagen from the subendothelial matrix result in thrombus formation. In physiological conditions, the platelet plug limits blood loss. However, in pathologic conditions, such as rupture of atherosclerotic plaques, platelet–collagen interactions are associated with cardiovascular and cerebral vascular diseases. Platelet glycoprotein VI (GPVI) plays a crucial role in collagen-induced activation and aggregation of platelets, and people who are deficient in GPVI suffer from bleeding disorders. Based on the fact that GPVI is coupled to the Fc receptor (FcR)-γ chain and thus should share homology with the FcR chains, the genes encoding human and mouse GPVI were identified. They belong to the immunoglobulin (Ig) superfamily and share 64% homology at the protein level. Functional evidence demonstrating the identity of the recombinant protein with GPVI was shown by binding to its natural ligand collagen; binding to convulxin (Cvx), a GPVI-specific ligand from snake venom; binding of anti-GPVI IgG isolated from a patient; and association to the FcR-γ chain. The study also demonstrated that the soluble protein blocks Cvx and collagen-induced platelet aggregation and that GPVI expression is restricted to megakaryocytes and platelets. Finally, human GPVI was mapped to chromosome 19, long arm, region 1, band 3 (19q13), in the same region as multiple members of the Ig superfamily. This work offers the opportunity to explore the involvement of GPVI in thrombotic disease, to develop alternative antithrombotic compounds, and to characterize the mechanism involved in GPVI genetic deficiencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.