To support efforts to modernize aviation systems to be safer and more efficient, high-precision trajectory prediction and robust anomaly detection methods are required. The terminal airspace is identified as the most critical airspace for individual flight-level and system-level safety and efficiency. To support successful trajectory prediction and anomaly detection methods within the terminal airspace, accurate identification of air traffic flows is paramount. Typically, air traffic flows are identified utilizing clustering algorithms, where performance relies on the definition of an appropriate distance function. The convergent/divergent nature of flows within the terminal airspace makes the definition of an appropriate distance function challenging. Utilization of the Euclidean distance is standard in aviation literature due to little computational expense and ability to cluster entire trajectories or trajectory segments at once. However, a primary limitation in the utilization of the Euclidean distance is the uneven distribution of distances as aircraft arrive at or depart from the airport, which may result in skewed classification and inadequate identification of air traffic flows. Therefore, a weighted Euclidean distance function is proposed to improve trajectory clustering within the terminal airspace. In this work, various weighting schemes are evaluated, applying the HDBSCAN algorithm to cluster the trajectories. This work demonstrates the promise of utilizing a weighted Euclidean distance function to improve the identification of terminal airspace air traffic flows. In particular, for the selected terminal airspace, if trajectory points closer to the border of the terminal airspace, but not necessarily at the border, are weighted highest, then a more accurate clustering is computed.
As air traffic demand grows, robust, data-driven anomaly detection methods are required to ensure that aviation systems become safer and more efficient. The terminal airspace is identified as the most critical airspace for both individual flight-level and system-level safety and efficiency. As such, developing data-driven anomaly detection methods to analyze terminal airspace operations is paramount. With the expansion of ADS-B technology, open-source flight tracking data has become more readily available to enable larger-scale analyses of aircraft operations. This paper makes a distinction between spatial metrics in ADS-B trajectory data and energy metrics derived from ADS-B trajectory data. Motivated by the limited number of approaches that simultaneously consider both spatial and energy metrics, this paper introduces the concepts of spatial anomalies and energy anomalies. In particular, it proposes a novel, unified framework for detection of spatial and energy anomalies in ADS-B trajectory data (and associated derived metrics). The framework consists of three main parts -a data processing procedure, a spatial anomaly detection method, and an energy anomaly detection method. The framework is demonstrated utilizing four months of ADS-B trajectory data associated with arrivals at San Francisco International Airport, and the relationship between the spatial and energy anomalies in this terminal airspace is explored. The results that stem from the implementation of this framework indicate that if an aircraft is spatially not conforming to an identified set of air traffic flows representing standard spatial operations, then this aircraft is more likely to experience non-conformance to standard operations in its energy metrics. Aviation operators, such as air traffic controllers, may benefit from this observation, as it may factor into decision-making in instances where there is the potential to instruct an aircraft to spatially deviate from standard operations. Additionally, this research revealed underlying differences between trajectories that are spatially nominal yet energy-anomalous and those trajectories that are spatially anomalous and energy-anomalous. Focusing solely on energy anomaly detection does not provide insight into potential spatial-related decisions that may have been made to result in off-nominal energy behavior.
Go-arounds are a necessary aspect of commercial aviation and are conducted after a landing attempt has been aborted. It is necessary to conduct go-arounds in the safest possible manner, as go-arounds are the most safety-critical of operations. Recently, the increased availability of data, such as ADS-B, has provided the opportunity to leverage machine learning and data analytics techniques to assess aviation safety events. This paper presents a framework to detect go-around flights, identify relevant features, and utilize unsupervised clustering algorithms to categorize go-around flights, with the objective of gaining insight into aspects of typical, nominal go-arounds and factors that contribute to potentially abnormal or anomalous go-arounds. Approaches into San Francisco International Airport in 2019 were examined. A total of 890 flights that conducted a single go-around were identified by assessing an aircraft’s vertical rate, altitude, and cumulative ground track distance states during approach. For each flight, 61 features relevant to go-around incidents were identified. The HDBSCAN clustering algorithm was leveraged to identify nominal go-arounds, anomalous go-arounds, and a third cluster of flights that conducted a go-around significantly later than other go-around trajectories. Results indicate that the go-arounds detected as being anomalous tended to have higher energy states and deviations from standard procedures when compared to the nominal go-arounds during the first approach, prior to the go-around. Further, an extensive comparison of energy states between nominal flights, anomalous flights, the first approach prior to the go-around, and the second approach following the go-around is presented.
As air traffic demand grows, robust, data-driven anomaly detection methods are required to ensure that aviation systems become safer and more efficient. The terminal airspace is identified as the most critical airspace for both individual flight-level and system-level safety and efficiency. As such, developing data-driven anomaly detection methods to analyze terminal airspace operations is paramount. With the expansion of ADS-B technology, open-source flight tracking data has become more readily available to enable larger-scale analyses of aircraft operations. This paper makes a distinction between spatial metrics in ADS-B trajectory data and energy metrics derived from ADS-B trajectory data. Motivated by the limited number of approaches that simultaneously consider both spatial and energy metrics, this paper introduces the concepts of spatial anomalies and energy anomalies. In particular, it proposes a novel, unified framework for detection of spatial and energy anomalies in ADS-B trajectory data (and associated derived metrics). The framework consists of three main parts - a data processing procedure, a spatial anomaly detection method, and an energy anomaly detection method. The framework is demonstrated utilizing four months of ADS-B trajectory data associated with arrivals at San Francisco International Airport, and the relationship between the spatial and energy anomalies in this terminal airspace is explored. The results that stem from the implementation of this framework indicate that if an aircraft is spatially not conforming to an identified set of air traffic flows representing standard spatial operations, then this aircraft is more likely to experience non-conformance to standard operations in its energy metrics. Aviation operators, such as air traffic controllers, may benefit from this observation, as it may factor into decision-making in instances where there is the potential to instruct an aircraft to spatially deviate from standard operations. Additionally, this research revealed underlying differences between trajectories that are spatially nominal yet energy-anomalous and those trajectories that are spatially anomalous and energy-anomalous. Focusing solely on energy anomaly detection does not provide insight into potential spatial-related decisions that may have been made to result in off-nominal energy behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.