Free-standing layer-by-layer (LbL) assembled thin films have recently found utility in a broad range of applications. Previously reported free-standing LbL films have generally required covalent modifications to improve aqueous stability and render these films suitable for biomedical applications. Here, we engineered chitosan and poly(acrylic acid) containing polyelectrolyte multilayer films, which are readily detached from hydrophilic silicon in aqueous conditions. These films demonstrate remarkable stability over 28 days in simulated in vivo conditions (pH 7.4, phosphate buffered saline at 37 8C) without the incorporation of any covalent crosslinking modifications. These films exhibit moduli (27-420 kPa) resembling that of many biological tissues including tendon, show high visible light transmittance of greater than 50%, and prevent fibronectin adsorption. The properties of this new detachable LbL film architecture indicate its promise for use in a variety of applications, particularly in medicine and biotechnology.
SUMMARYLung interstitial CD4+ T cells are critical for protection against pulmonary infections, but the fate of this population during HIV-1 infection is not well described. We studied CD4+ T cells in the setting of HIV-1 infection in human lung tissue, humanized mice, and a Mycobacterium tuberculosis (Mtb)/simian immunodeficiency virus (SIV) nonhuman primate co-infection model. Infection with a CCR5-tropic strain of HIV-1 or SIV results in severe and rapid loss of lung interstitial CD4+ T cells but not blood or lung alveolar CD4+ T cells. This is accompanied by high HIV-1 production in these cells in vitro and in vivo. Importantly, during early SIV infection, loss of lung interstitial CD4+ T cells is associated with increased dissemination of pulmonary Mtb infection. We show that lung interstitial CD4+ T cells serve as an efficient target for HIV-1 and SIV infection that leads to their early depletion and an increased risk of disseminated tuberculosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.