PurposeTo perform a meta-analysis to examine variability among prevalence estimates for CFS/ME, according to the method of assessment used.MethodsDatabases were systematically searched for studies on CFS/ME prevalence in adults that applied the 1994 Centers for Disease Control (CDC) case definition.1 Estimates were categorized into two methods of assessment: self-reporting of symptoms versus clinical assessment of symptoms. Meta-analysis was performed to pool prevalences by assessment using random effects modeling. This was stratified by sample setting (community or primary care) and heterogeneity was examined using the I2 statistic.ResultsOf 216 records found, 14 studies were considered suitable for inclusion. The pooled prevalence for self-reporting assessment was 3.28% (95% CI: 2.24–4.33) and 0.76% (95% CI: 0.23–1.29) for clinical assessment. High variability was observed among self-reported estimates, while clinically assessed estimates showed greater consistency.ConclusionThe observed heterogeneity in CFS/ME prevalence may be due to differences in method of assessment. Stakeholders should be cautious of prevalence determined by the self-reporting of symptoms alone. The 1994 CDC case definition appeared to be the most reliable clinical assessment tool available at the time of these studies. Improving clinical case definitions and their adoption internationally will enable better comparisons of findings and inform health systems about the true burden of CFS/ME.
Perturbations in immune processes are a hallmark of a number of autoimmune and inflammatory disorders. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is an inflammatory disorder with possible autoimmune correlates, characterized by reduced NK cell activity, elevations in regulatory T cells (Tregs) and dysregulation in cytokine levels. The purpose of this article is to examine innate and adaptive immune cell phenotypes and functional characteristics that have not been previously examined in CFS/ME patients. Thirty patients with CFS/ME and 25 non-fatigued controls were recruited for this study. Whole blood samples were collected from all participants for the assessment of cell phenotypes, functional properties, receptors, adhesion molecules, antigens and intracellular proteins using flow cytometric protocols. The cells investigated included NK cells, dendritic cells, neutrophils, B cells, T cells, γδT cells and Tregs. Significant changes were observed in B-cell subsets, Tregs, CD4(+)CD73(+)CD39(+) T cells, cytotoxic activity, granzyme B, neutrophil antigens, TNF-α and IFN-γ in the CFS/ME patients in comparison with the non-fatigued controls. Alterations in B cells, Tregs, NK cells and neutrophils suggest significant impairments in immune regulation in CFS/ME and these may have similarities to a number of autoimmune disorders.
SummaryTransient receptor potential melastatin subfamily 3 (TRPM3) ion channels play a role in calcium (Ca2+) cell signalling. Reduced TRPM3 protein expression has been identified in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) patients. However, the significance of TRPM3 and association with intracellular Ca2+ mobilization has yet to be determined. Fifteen CFS/ME patients (mean age 48·82 ± 9·83 years) and 25 healthy controls (mean age 39·2 ± 12·12 years) were examined. Isolated natural killer (NK) cells were labelled with fluorescent antibodies to determine TRPM3, CD107a and CD69 receptors on CD56dimCD16+NK cells and CD56brightCD16dim/– NK cells. Ca2+ flux and NK cytotoxicity activity was measured under various stimulants, including pregnenolone sulphate (PregS), thapsigargin (TG), 2‐aminoethoxydiphenyl borate (2APB) and ionomycin. Unstimulated CD56brightCD16dim/– NK cells showed significantly reduced TRPM3 receptors in CFS/ME compared with healthy controls (HC). Ca2+ flux showed no significant difference between groups. Moreover, PregS‐stimulated CD56brightCD16dim/–NK cells showed a significant increase in Ca2+ flux in CFS/ME patients compared with HC. By comparison, unstimulated CD56dimCD16+ NK cells showed no significant difference in both Ca2+ flux and TRPM3 expression. PregS‐stimulated CD56dimCD16+ NK cells increased TRPM3 expression significantly in CFS/ME, but this was not associated with a significant increase in Ca2+ flux. Furthermore, TG‐stimulated CD56dimCD16+ NK cells increased K562 cell lysis prior to PregS stimulation in CFS/ME patients compared with HC. Differential expression of TRPM3 and Ca2+ flux between NK cell subtypes may provide evidence for their role in the pathomechanism involving NK cell cytotoxicity activity in CFS/ME.
AimThe aim of this paper was to determine natural killer (NK) cytotoxic activity and if single nucleotide polymorphisms (SNPs) and genotypes in transient receptor potential (TRP) ion channels and acetylcholine receptors (AChRs) were present in isolated NK cells from previously identified myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) patients.Subjects and methodsA total of 39 ME/CFS patients (51.69±2 years old) and 30 unfatigued controls (47.60±2.39 years old) were included in this study. Patients were defined according to the 1994 Centers for Disease Control and Prevention criteria. Flow cytometry protocols were used to examine NK cytotoxic activity. A total of 678 SNPs from isolated NK cells were examined for 21 mammalian TRP ion channel genes and for nine mammalian AChR genes via the Agena Bioscience iPlex Gold assay. SNP association and genotype was determined using analysis of variance and Plink software.ResultsME/CFS patients had a significant reduction in NK percentage lysis of target cells (17%±4.68%) compared with the unfatigued control group (31%±6.78%). Of the 678 SNPs examined, eleven SNPs for TRP ion channel genes (TRPC4, TRPC2, TRPM3, and TRPM8) were identified in the ME/CFS group. Five of these SNPs were associated with TRPM3, while the remainder were associated with TRPM8, TRPC2, and TRPC4 (P<0.05). Fourteen SNPs were associated with nicotinic and muscarinic AChR genes: six with CHRNA3, while the remainder were associated with CHRNA2, CHRNB4, CHRNA5, and CHRNE (P<0.05). There were sixteen genotypes identified from SNPs in TRP ion channels and AChRs for TRPM3 (n=5), TRPM8 (n=2), TRPC4 (n=3), TRPC2 (n=1), CHRNE (n=1), CHRNA2 (n=2), CHRNA3 (n=1), and CHRNB4 (n=1) (P<0.05).ConclusionWe identified a number of SNPs and genotypes for TRP ion channels and AChRs from isolated NK cells in patients with ME/CFS, suggesting these SNPs and genotypes may be involved in changes in NK cell function and the development of ME/CFS pathology. These anomalies suggest a role for dysregulation of Ca2+ in AChR and TRP ion channel signaling in the pathomechanism of ME/CFS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.