The capture and use of water are critically important in drylands, which collectively constitute Earth's largest biome. Drylands will likely experience lower and more unreliable rainfall as climatic conditions change over the next century. Dryland soils support a rich community of microphytic organisms (biocrusts), which are critically important because they regulate the delivery and retention of water. Yet despite their hydrological significance, a global synthesis of their effects on hydrology is lacking. We synthesized 2,997 observations from 109 publications to explore how biocrusts affected five hydrological processes (times to ponding and runoff, early [sorptivity] and final [infiltration] stages of water flow into soil, and the rate or volume of runoff) and two hydrological outcomes (moisture storage, sediment production). We found that increasing biocrust cover reduced the time for water to pond on the surface (−40%) and commence runoff (−33%), and reduced infiltration (−34%) and sediment production (−68%). Greater biocrust cover had no significant effect on sorptivity or runoff rate/amount, but increased moisture storage (+14%). Infiltration declined most (−56%) at fine scales, and moisture storage was greatest (+36%) at large scales. Effects of biocrust type (cyanobacteria, lichen, moss, mixed), soil texture (sand, loam, clay), and climatic zone (arid, semiarid, dry subhumid) were nuanced. Our synthesis provides novel insights into the magnitude, processes, and contexts of biocrust effects in drylands. This information is critical to improve our capacity to manage dwindling dryland water supplies as Earth becomes hotter and drier.
Grazing is one of the most widespread forms of intensive management on Earth and is linked to reductions in soil health. However, little is known about the relative influence of herbivore type, herbivore intensity and site productivity on soil health. This lack of knowledge reduces our capacity to manage landscapes where grazing is a major land use. 2. We used structural equation modelling to assess the effects of recent (cattle, sheep, goats, kangaroos and rabbit dung) and historic (cattle, sheep/goat livestock tracks) herbivore activity on soil health at 451 sites across 0Á5 M km 2 of eastern Australia. We assessed the direct and indirect effects of increasing herbivore intensity, using dung and livestock tracks, on 15 morphological, physical and chemical attributes that are indicative of soil health, and we used these attributes to derive three indices representing the capacity of the soil to maintain its structural integrity (stability), cycle nutrients (nutrients) and maintain water flow (infiltration).3. Grazing had negative effects on the three soil health indices, but these effects varied with productivity. Grazing intensity was associated with strong reductions in the stability and nutrient indices under low productivity, but these effects diminished with increasing productivity. Herbivore effects on individual attributes varied in relation to productivity level and were strongly herbivore specific, with most due to cattle grazing, and to a lesser extent, sheep, goats and rabbits. Few effects due to kangaroos or historic grazing by livestock were observed. 4. Synthesis and applications. Our study shows that livestock and rabbits degrade soil health through grazing, and its effects are strongest under low or moderate productivity; however, kangaroo effects are benign. Our findings support calls for resource management agencies to consider site productivity, as well as herbivore type and intensity, when developing strategies to manage grazing by livestock, and feral and native herbivores.
Globally, millions of animals are rescued and rehabilitated by wildlife carers each year. Information gathered in this process is useful for uncovering threats to native wildlife, particularly those from anthropogenic causes. However, few studies using rehabilitation data include a diverse range of fauna, cover large geographical areas, and consider long-term trends. Furthermore, few studies have statistically modelled causes of why animals come into care, and what are their chances of survival. This study draws on 469,553 rescues reported over six years by wildlife rehabilitators for 688 species of bird, reptile, and mammal from New South Wales, Australia. For birds and mammals, ‘abandoned/orphaned’ and ‘collisions with vehicles’ were the dominant causes for rescue, however for reptiles this was ‘unsuitable environment’. Overall rescue numbers were lowest in winter, and highest in spring, with six-times more ‘abandoned/orphaned’ individuals in spring than winter. Of the 364,461 rescues for which the fate of an animal was known, 92% fell within two categories: ‘dead’, ‘died or euthanased’ (54.8% of rescues with known fate) and animals that recovered and were subsequently released (37.1% of rescues with known fate). Modelling of the fate of animals indicated that the likelihood of animal survival (i.e. chance of: being released, left and observed, or permanent care), was related to the cause for rescue. In general, causes for rescue involving physical trauma (collisions, attacks, etc.) had a much lower likelihood of animals surviving than other causes such as ‘unsuitable environment’, ‘abandoned/orphaned’, and this also showed some dependence upon whether the animal was a bird, reptile, or mammal. This suggests rehabilitation efforts could be focused on particular threats or taxa to maximise success, depending on the desired outcomes. The results illustrate the sheer volume of work undertaken by rehabilitation volunteers and professionals toward both animal welfare and to the improvement of wildlife rehabilitation in the future.
Abstract. Scientists have largely neglected the effects of grazing on soil microbial communities despite their importance as drivers of ecosystem functions and services. We hypothesized that changes in soil properties resulting from grazing regulate the diversity of soil microbes by releasing/suppressing subordinate microbial taxa via competition. To test this, we examined how intensity of vertebrate herbivores influences the diversity and composition of soil bacteria and fungi at 216 soil samples from 54 sites across four microsites. Increasing grazing intensity reduced soil carbon, suppressing the dominant bacterial phylum Actinobacteria (indirectly promoting bacterial diversity) and increasing the dominant fungal phylum Ascomycetes (indirectly reducing fungal diversity). Our data provide novel evidence that grazing modulates the diversity and composition of soil microbes via increases or reductions in competition by dominant taxa. Our results suggest that grazing can potentially alter soil function by altering microbial community composition, providing a clear link between grazing management, carbon availability and ecosystem functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.