Mitochondria play a central role in the survival and death of neurons. The detailed bioenergetic mechanisms by which isolated mitochondria generate ATP, sequester Ca2+, generate reactive oxygen species, and undergo Ca2+-dependent permeabilization of their inner membrane are currently being applied to the function of mitochondria in situ within neurons under physiological and pathophysiological conditions. Here we review the functional bioenergetics of isolated mitochondria, with emphasis on the chemiosmotic proton circuit and the application (and occasional misapplication) of these principles to intact neurons. Mitochondria play an integral role in both necrotic and apoptotic neuronal cell death, and the bioenergetic principles underlying current studies are reviewed.
Exposure of cultured cerebellar granule cells to 100 µM glutamate plus glycine in the absence of Mg2+ causes calcium loading of the in situ mitochondria and is excitotoxic, as demonstrated by a collapse of the cellular ATP/ADP ratio, cytoplasmic Ca2+ deregulation (the failure of the cell to maintain a stable cytoplasmic free Ca2+ concentration), and extensive cell death. Glutamate‐evoked Ca2+ deregulation is exacerbated by the mitochondrial respiratory chain inhibitor rotenone. Cells maintained by glycolytic ATP, i.e., in the presence of the mitochondrial ATP synthase inhibitor oligomycin, remain viable for several hours but are still susceptible to glutamate; thus, disruption of mitochondrial ATP synthesis is not a necessary step in glutamate excitotoxicity. In contrast, the combination of rotenone (or antimycin A) plus oligomycin, which collapses the mitochondrial membrane potential, therefore preventing mitochondrial Ca2+ transport, allows glutamate‐exposed cells to maintain a high ATP/ADP ratio while accumulating little 45Ca2+ and maintaining a low bulk cytoplasmic free Ca2+ concentration determined by fura‐2. It is concluded that mitochondrial Ca2+ accumulation is a necessary intermediate in glutamate excitotoxicity, whereas the decreased Ca2+ flux into cells with depolarized mitochondria may reflect a feedback inhibition of the NMDA receptor mediated by localized Ca2+ accumulation in a microdomain accessible to the mitochondria.
Many patients infected with human immunodeficiency virus-1 (HIV-1) develop a syndrome of neurologic deterioration known as HIV-associated dementia (HAD). Neurons are not productively infected by HIV-1; thus, the mechanism of HIV-induced neuronal injury remains incompletely understood. Several investigators have observed evidence of neuronal injury, including dendritic degeneration, and apoptosis in CNS tissue from patients with HAD. Caspase enzymes, proteases associated with the process of apoptosis, are synthesized as inactive proenzymes and are activated in a proteolytic cascade after exposure to apoptotic signals. Here we demonstrate that HAD is associated with active caspase-3-like immunoreactivity that is localized to the soma and dendrites of neurons in affected regions of the human brain. Additionally, the cascade of caspase activation was studied using an in vitro model of HIV-induced neuronal apoptosis. Increased caspase-3 proteolytic activity and mitochondrial release of cytochrome c were observed in cerebrocortical cultures exposed to the HIV coat protein gp120. Specific inhibitors of both the Fas/tumor necrosis factor-alpha/death receptor pathway and the mitochondrial caspase pathway prevented gp120-induced neuronal apoptosis. Caspase inhibition also prevented the dendrite degeneration observed in vivo in transgenic mice with CNS expression of HIV/gp120. These findings suggest that pharmacologic interventions aimed at the caspase enzyme pathways may be beneficial for the prevention or treatment of HAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.