Aryl amination is an essential transformation for medicinal, process, and materials chemistry. In addition to classic Buchwald−Hartwig amination conditions, blue-light-driven metallaphotoredox catalysis has emerged as a valuable tool for C−N cross-coupling. However, blue light suffers from low penetration through reaction media, limiting its scalability for industrial purposes. In addition, blue light enhances unwanted side-product formation in metallaphotoredox catalysis, namely hydrodehalogenation. Low-energy light, such as deep red (DR) or near-infrared (NIR), offers a solution to this problem as it can provide enhanced penetration through reaction media as compared to higher-energy wavelengths. Herein, we show that lowenergy light can also enhance the desired reactivity in metallaphotoredox catalysis by suppressing unwanted hydrodehalogenation. We hypothesize that the reduced side product is formed by direct photolysis of the aryl−nickel bond by the high-energy light, leading to the generation of aryl radicals. Using deep-red or near-infrared light and an osmium photocatalyst, we demonstrate an enhanced scope of (hetero)aryl bromides and amine-based nucleophiles with minimal formation of hydrodehalogenation byproducts.
The use of low-energy deep-red (DR) and near-infrared (NIR) light to excite chromophores enables catalysis to ensue across barriers such as materials and tissues. Herein, we report the detailed photophysical characterization of a library of OsII polypyridyl photosensitizers that absorb low-energy light. By tuning ligand scaffold and electron density, we access a range of synthetically useful excited state energies and redox potentials.1 Introduction1.1 Scope1.2 Measuring Ground-State Redox Potentials1.3 Measuring Photophysical Properties1.4 Synthesis of Osmium Complexes2 Properties of Osmium Complexes2.1 Redox Potentials of Os(L)2-Type Complexes2.2 Redox Potentials of Os(L)3-Type Complexes2.3 UV/Vis Absorption and Emission Spectroscopy3 Conclusions
Photoredox catalysis has revolutionized synthetic chemistry in recent decades. However, the field has traditionally used high-energy blue/ultraviolet light to activate chromophores. High-energy irradiation is associated with several drawbacks (e.g., activation of sensitive functional groups, undesired metal-ligand homolysis, background activation of molecules, and poor penetration), which has led researchers to develop alternative systems with lower energy deep red (DR) or near-infrared (NIR) light. This graphical review provides a concise overview of photophysical principles relevant to photoredox catalysis. Several applications that benefit from low-energy irradiation, such as large-scale batch reactions, photodynamic therapy, biological labeling, and multi-photon excitation are reviewed.
Photocatalysis driven by visible and ultraviolet irradiation is a fundamental tool for synthetic chemists. Recently, expansion of this tool to near-infrared (NIR) light has gained in popularity. Herein, we report the detailed photophysical characterization of a library of OsII polypyridyl photosensitizers that absorb NIR irradiation. By tuning ligand scaffold and electron density, we access a range of synthetically useful excited state energies and redox potentials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.