IntroductionBiofortified crops represent a sustainable agricultural solution for the widespread micronutrient malnutrition in India and other resource-limited settings. This study aims to investigate the effect of the consumption of foods prepared with iron- and zinc-biofortified pearl millet (FeZn-PM) by children on biomarkers of iron and zinc status, growth, and immune function.Methods and analysisWe will conduct a randomised controlled feeding trial in identified slums of Mumbai, India among 200 children aged between 12 and 18 months. Children will be randomised to receive foods prepared with the biofortified PM (FeZn-PM, ICTP8203-Fe) or non-biofortified PM. Anthropometric and morbidity data will be gathered every month for 9 months. Biological samples will be collected at baseline, midline and endline to assess iron and zinc status, including haemoglobin, serum ferritin, serum transferrin receptor, serum zinc, C-reactive protein and alpha-1 acid glycoprotein. Biological samples will be archived for future analyses. The midline measurement will be a random serial sample between baseline and endline. Immune function will be assessed at each time point by the measurement of T cell counts and vaccine responses in a subset, respectively.Ethics and disseminationThis study has obtained clearance from the Health Ministry Screening Committee of the Indian Council of Medical Research. Ethical clearance has been obtained from Cornell University’s Institutional Review Board, the Inter System Biomedica Ethics Committee and St John’s Research Institute’s Institutional Ethics Review Board. The results of this study will be disseminated at several research conferences and as published articles in peer-reviewed journals.Trial registration numberClinical trial registration number NCT02233764. CTRI registration number REF/2014/10/007731.
Vitamin B-12 deficiency is a major public health problem affecting individuals across the lifespan, with known hematological, neurological, and obstetric consequences. Emerging evidence suggests that vitamin B-12 may have an important role in other aspects of human health, including the composition and function of the gastrointestinal (gut) microbiome. Vitamin B-12 is synthesized and utilized by bacteria in the human gut microbiome and is required for over a dozen enzymes in bacteria, compared to only two in humans. However, the impact of vitamin B-12 on the gut microbiome has not been established. This systematic review was conducted to examine the evidence that links vitamin B-12 and the gut microbiome. A structured search strategy was used to identify in vitro, animal, and human studies that assessed vitamin B-12 status, dietary intake, or supplementation, and the gut microbiome using culture-independent techniques. A total of 22 studies (3 in vitro, 8 animal, 11 human observational studies) were included. Nineteen studies reported vitamin B-12 intake, status, or supplementation was associated with gut microbiome outcomes, including beta-diversity, alpha-diversity, relative abundance of bacteria, functional capacity, or short chain fatty acid production. Evidence suggests vitamin B-12 may be associated with changes in bacterial abundance. While results from in vitro studies suggest vitamin B-12 may increase alpha-diversity and shift gut microbiome composition (beta-diversity), findings from animal studies and observational human studies were heterogeneous. Based on evidence from in vitro and animal studies, microbiome outcomes may differ by cobalamin form and co-intervention. To date, few prospective observational studies and no randomized trials have been conducted to examine the effects of vitamin B-12 on the human gut microbiome. The impact of vitamin B-12 on the gut microbiome needs to be elucidated to inform screening and public health interventions. Statement of significance: Vitamin B-12 is synthesized and utilized by bacteria in the human gut microbiome and is required by over a dozen enzymes in bacteria. However, to date, no systematic reviews have been conducted to evaluate the impact of vitamin B-12 on the gut microbiome, or its implications for human health.
Background: Young children living in urban slums are vulnerable to malnutrition and subsequently poor health outcomes, but data on the correlates of stunting, underweight, wasting, and anemia specifically among 10–18 month-old children in India remain limited. Objective: In this analysis, we sought to describe the prevalence of and examine correlates for different markers of undernutrition, including stunting, underweight, and anemia among 10–18 month-old children living in urban slums, an understudied vulnerable group. Methods: Children and their mothers ( n = 323) were screened for anthropometry, demographics, and complete blood counts for hemoglobin concentration between March and November 2017 (Clinicaltrials.gov ID: NCT02233764). Correlates included child and mother's age, sex, birth order, birth weight, illness episodes, hemoglobin concentration, family income, maternal height, and maternal education level. Risk ratios (RR, 95% CI) for binary outcomes (stunting, underweight, wasting and anemia) and mean differences (β, 95% CI) for continuous outcomes (anthropometric Z-scores, hemoglobin concentration) were calculated using multivariate binomial and linear regression (SAS 9.4). Results: The prevalence of stunting was 31.2%, underweight 25.1%, wasting (9.0%), and anemia (76%) among all children. Male children had a higher prevalence of poor growth indices and lower anthropometric Z-scores than females. Male sex, low birthweight, shorter maternal height, report of ≥1 episodes of illness within the past month, older maternal age, and birth order ≥2 were also associated with poor growth and anemia in multivariate models. Correlates of undernutrition were different among females and males. Female children had a 40% (20, 60%) higher risk of anemia associated with diarrhea, and male children who were firstborn had a 20% (0, 70%) lower risk of anemia. Conclusions: These results show that poor growth and anemia among young children is prevalent in urban slums of Mumbai, and that sex of the child may play an important role in informing interventions to address undernutrition.
In this cross-sectional study, we describe the composition and diversity of the gut microbiota among undernourished children living in urban slums of Mumbai, India, and determine how nutritional status, including anthropometric measurements, dietary intakes from complementary foods, feeding practices, and micronutrient concentrations, is associated with their gut microbiota. We collected rectal swabs from children aged 10 to 18 months living in urban slums of Mumbai participating in a randomized controlled feeding trial and conducted 16S rRNA sequencing to determine the composition of the gut microbiota. Across the study cohort, Proteobacteria dominated the gut microbiota at over 80% relative abundance, with Actinobacteria representation at <4%, suggesting immaturity of the gut. Increased microbial α-diversity was associated with current breastfeeding, greater head circumference, higher fat intake, and lower hemoglobin concentration and weight-for-length Z-score. In redundancy analyses, 47% of the variation in Faith’s phylogenetic diversity (Faith’s PD) could be accounted for by age and by iron and polyunsaturated fatty acid intakes. Differences in community structure (β-diversity) of the microbiota were observed among those consuming fats and oils the previous day compared to those not consuming fats and oils the previous day. Our findings suggest that growth, diet, and feeding practices are associated with gut microbiota metrics in undernourished children, whose gut microbiota were comprised mainly of Proteobacteria, a phylum containing many potentially pathogenic taxa. IMPORTANCE The impact of comprehensive nutritional status, defined as growth, nutritional blood biomarkers, dietary intakes, and feeding practices, on the gut microbiome in children living in low-resource settings has remained underreported in microbiome research. Among undernourished children living in urban slums of Mumbai, India, we observed a high relative abundance of Proteobacteria, a phylum including many potentially pathogenic species similar to the composition in preterm infants, suggesting immaturity of the gut, or potentially a high inflammatory burden. We found head circumference, fat and iron intake, and current breastfeeding were positively associated with microbial diversity, while hemoglobin and weight for length were associated with lower diversity. Findings suggest that examining comprehensive nutrition is critical to gain more understanding of how nutrition and the gut microbiota are linked, particularly in vulnerable populations such as children in urban slum settings.
Biofortification, a method for increasing micronutrient content of staple crops, is a promising strategy for combating major global health problems, such as iron and zinc deficiency. We examined the acceptability of recipes prepared using iron- and zinc-biofortified pearl millet (FeZnPM) (~80 ppm Fe, ~34 ppm Zn, varietal ICTP-8203), compared to conventional pearl millet (CPM) (~20 ppm Fe, ~19 ppm Zn) in preparation for an efficacy trial. Our objective was to examine the acceptability of FeZnPM compared to CPM among young children and mothers living in the urban slums of Mumbai. Standardized traditional feeding program recipes (n = 18) were prepared with either FeZnPM or CPM flour. The weight (g) of each food product was measured before and after consumption by children (n = 125) and the average grams consumed over a 3-day period were recorded. Mothers (n = 60) rated recipes using a 9-point hedonic scale. Mean intakes and hedonic scores of each food product were compared using t-tests across the two types of pearl millet. There were no statistically significant differences in consumption by children (FeZnPM: 25.27 ± 13.0 g; CPM: 21.72 ± 6.90 g) across the food products (P = 0.28). Overall mean hedonic scores for all recipes were between 7 to 9 points. CPM products were rated higher overall (8.22 ± 0.28) compared to FeZnPM products (7.95 ± 0.35) (P = 0.01). FeZnPM and CPM were similarly consumed and had high hedonic scores, demonstrating high acceptability in this population. These results support using these varieties of pearl millet in a proposed trial [ ID: NCT02233764; Clinical Trials Registry of India (CTRI), reference number REF/2014/10/007731, CTRI number CTRI/2015/11/006376] testing the efficacy of FeZnPM for improving iron status and growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.