Background-Clinical prediction models targeting patients for Barrett's esophagus (BE) screening include data obtained by interview, questionnaire, and body measurements. A tool based on electronic health records (EHR) data could reduce cost and enhance usability, particularly if combined with non-endoscopic BE screening methods.
Aims-To determine whether EHR-based data can identify BE patients.Methods-We performed a retrospective review of patients ages 50-75 who underwent a firsttime esophagogastroduodenoscopy. Data extracted from the EHR included demographics and BE risk factors. Endoscopy and pathology reports were reviewed for histologically confirmed BE. Screening criteria modified from clinical guidelines were assessed for association with BE. Subsequently, a score based on multivariate logistic regression was developed and assessed for its ability to identify BE subjects.Results-A total of 2931 patients were assessed, and BE was found in 1.9%. Subjects who met screening criteria were more likely to have BE (3.3% vs. 1.1%, p = 0.001), and the criteria predicted BE with an AUROC of 0.65 (95% CI 0.59-0.71). A score based on logistic regression modeling included gastroesophageal reflux disease, sex, body mass index, and ever-smoker status and identified BE subjects with an AUROC of 0.71 (95% CI 0.64-0.77). Both prediction tools produced higher AUROCs in women than in men.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.