Differential responses to immune checkpoint inhibitors (ICI) may be attributed to tumor-intrinsic factors or environmental cues; however, these mechanisms cannot fully explain the variable ICI responses in different individuals. Here, we investigate the potential contribution of immunological heterogeneity with a focus on differences in T-cell receptor (TCR) repertoire to ICI responses, which has not been defined previously. To reveal additional factors underlying heterogeneous responses to ICI, we employed a squamous cell carcinoma (SCC) mouse model in which tumor-bearing recipients unambiguously diverged into responders (R) or non-responders (NR) upon anti-PD-L1 treatment. Treatment efficacy absolutely required CD8 T-cells and correlated positively with effector functions of CD8 tumor-infiltrating lymphocytes (TILs). We showed that TCR repertoires exhibited a similar magnitude of clonal expansion in R vs. NR CD8 TILs. However, the top expanded TCR clonotypes appeared to be mutually exclusive between R and NR CD8 TILs, which also occurred in a recipient-specific manner, demonstrating preferential expansion of distinct TCR clonotypes against the same SCC tumor. Unexpectedly, R vs. NR CD8 TILs reached all activation clusters and did not exhibit substantial global differences in transcriptomes. By linking single-cell transcriptomic data with unique TCR clonotypes, CD8 TILs harboring top TCR clonotypes were found to occupy distinct activation clusters and upregulate genes favoring anti-tumor immunity to different extents in R vs. NR. We conclude that stochastic differences in CD8 TIL TCR repertoire and distinct activation states of top TCR clonotypes may contribute to differential anti-PD-L1 responses. Our study suggests that host-intrinsic immunological heterogeneity may offer a new explanation for differential ICI responses in different individuals, which could impact on strategies for personalized cancer immunotherapy.
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment; however, the responses to ICI treatment are highly variable in different individuals and the underlying mechanisms remain poorly understood. Here, we employed a mouse squamous cell carcinoma (SCC) model where tumor-bearing recipients diverged into responders (R) versus non-responders (NR) upon anti-PD-L1 treatment. We performed in-depth TCRβ sequencing with immunoSEQ platform to delineate the differences in CD8 tumor-infiltrating lymphocytes (TILs). We found that R and NR CD8 TILs both exhibited evidence of clonal expansion, suggesting activation regardless of response status. We detected no differences in clonal expansion or clonal diversity indexes between R vs. NR. However, the top expanded (>1%) TCRβ clonotypes appeared to be mutually exclusive between R and NR CD8 TILs, showing a preferential expansion of distinct TCRβ clonotypes in response to the same SCC tumor in R vs. NR. Notably, the mutual exclusivity of TCR clonotypes in R vs. NR was only observed when top TCRβ clonotypes were counted, because such top-expanded clonotypes are present in the opposite outcome group at a much lower frequency. Many TCRβ sequences were detected in only one recipient at a high frequency, implicating highly individualized anti-tumor immune responses. We conclude that differences in the clonal frequency of top TCR clonotypes between R and NR CD8 TILs may be one of the factors underlying differential anti-PD-L1 responses. This notion may offer a novel explanation for variable ICI responses in different individuals, which may substantially impact the development of new strategies for personalized cancer immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.