MRI is a non-invasive medical imaging technique that provides both structural and functional data on human brain. In addition to being a non-invasive procedure, the degree of anatomical detail imaged with MRI makes this technique the modality of choice for the diagnosis, treatment-planning, and follow-up in a number of neurological diseases.
BackgroundFollowing fear conditioning (FC), ex vivo evidence suggests that early dynamics of cellular and molecular plasticity in amygdala and hippocampal circuits mediate responses to fear. Such altered dynamics in fear circuits are thought to be etiologically related to anxiety disorders including posttraumatic stress disorder (PTSD). Consistent with this, neuroimaging studies of individuals with established PTSD in the months after trauma have revealed changes in brain regions responsible for processing fear. However, whether early changes in fear circuits can be captured in vivo is not known.MethodsWe hypothesized that in vivo magnetic resonance diffusion tensor imaging (DTI) would be sensitive to rapid microstructural changes elicited by FC in an experimental mouse PTSD model. We employed a repeated measures paired design to compare in vivo DTI measurements before, one hour after, and one day after FC-exposed mice (n = 18).ResultsUsing voxel-wise repeated measures analysis, fractional anisotropy (FA) significantly increased then decreased in amygdala, decreased then increased in hippocampus, and was increasing in cingulum and adjacent gray matter one hour and one day post-FC respectively. These findings demonstrate that DTI is sensitive to early changes in brain microstructure following FC, and that FC elicits distinct, rapid in vivo responses in amygdala and hippocampus.ConclusionsOur results indicate that DTI can detect rapid microstructural changes in brain regions known to mediate fear conditioning in vivo. DTI indices could be explored as a translational tool to capture potential early biological changes in individuals at risk for developing PTSD.
Background and Purpose— Selection of patients with acute ischemic stroke for endovascular treatment generally relies on dynamic susceptibility contrast magnetic resonance imaging or computed tomography perfusion. Dynamic susceptibility contrast magnetic resonance imaging requires injection of contrast, whereas computed tomography perfusion requires high doses of ionizing radiation. The purpose of this work was to develop and evaluate a deep learning (DL)–based algorithm for assisting the selection of suitable patients with acute ischemic stroke for endovascular treatment based on 3-dimensional pseudo-continuous arterial spin labeling (pCASL). Methods— A total of 167 image sets of 3-dimensional pCASL data from 137 patients with acute ischemic stroke scanned on 1.5T and 3.0T Siemens MR systems were included for neural network training. The concurrently acquired dynamic susceptibility contrast magnetic resonance imaging was used to produce labels of hypoperfused brain regions, analyzed using commercial software. The DL and 6 machine learning (ML) algorithms were trained with 10-fold cross-validation. The eligibility for endovascular treatment was determined retrospectively based on the criteria of perfusion/diffusion mismatch in the DEFUSE 3 trial (Endovascular Therapy Following Imaging Evaluation for Ischemic Stroke). The trained DL algorithm was further applied on twelve 3-dimensional pCASL data sets acquired on 1.5T and 3T General Electric MR systems, without fine-tuning of parameters. Results— The DL algorithm can predict the dynamic susceptibility contrast–defined hypoperfusion region in pCASL with a voxel-wise area under the curve of 0.958, while the 6 ML algorithms ranged from 0.897 to 0.933. For retrospective determination for subject-level endovascular treatment eligibility, the DL algorithm achieved an accuracy of 92%, with a sensitivity of 0.89 and specificity of 0.95. When applied to the GE pCASL data, the DL algorithm achieved a voxel-wise area under the curve of 0.94 and a subject-level accuracy of 92% for endovascular treatment eligibility. Conclusions— pCASL perfusion magnetic resonance imaging in conjunction with the DL algorithm provides a promising approach for assisting decision-making for endovascular treatment in patients with acute ischemic stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.