Nanoparticles are widely studied for their potential medical uses in diagnostics and therapeutics. The interface between a nanoparticle and its target has been a focus of research, both to guide the nanoparticle and to prevent it from deactivating. Given nature's frequent use of phospholipid vesicles as carriers, much attention has been paid to phospholipids as a vehicle for drug delivery. The physical chemistry of bilayer formation and nanoparticle encapsulation is complex, touching on fundamental properties of hydrophobicity. Understanding the design rules for particle synthesis and encapsulation is an active area of research. The aim of this review is to provide a perspective on what preparative guideposts have been empirically discovered and how these are related to theoretical understanding. In addition, we aim to summarize how modern theory is beginning to help guide the design of functional particles that can effectively cross biological membranes.
A series of n-alkanes cospread with alkanethiol-stabilized gold nanoparticles (AuNP) were studied as Langmuir monolayers by synchrotron X-ray reflectivity and diffraction. Tetradecanethiol capped gold nanoparticles with core diameters close to 2 nm were used to make films at 20 °C, below the ligand order–disorder temperature. A variety of n-alkane chain lengths (Cn = C n H2n+2, where n = 12, 15 and 16) were tested to assess the interfacial assembly of nanoparticle films as a result of different mixing scenarios indicated in their surface pressure versus area isotherms. Synchrotron grazing incidence X-ray diffraction (GIXD) and reflectivity (XR) confirm that mixtures of n-alkane and AuNP exhibiting improved fluidity in their compression isotherm are indeed incorporating n-alkane into the AuNP ligand shell and stabilizing it at the air–water interface. The resulting films show a doubling of their correlation lengths and thus a significant improvement on their ordering, as well as increased lattice spacing that is dependent upon the n-alkane chain length. Mixtures that do not exhibit changes in their surface pressure vs area isotherm similarly show little change in the interfacial assembly of the nanoparticle films except to promote monolayer collapse and multilayer formation. Improvements to the film order are assigned to the initial formation of larger nanoparticle domains. The nature of the chain length dependence and persistence of the n-alkane through compression suggest a favorable interaction with the nanoparticle ligand shell that results in the extension of methylene units of the longer alkanes beyond the thiol layer, which has implications for influencing nanoparticle interactions.
Under healthy conditions, pro-and anti-phagocytic signals are balanced. Cluster of Differentiation 47 (CD47) is believed to act as an anti-phagocytic marker that is highly expressed on multiple types of human cancer cells including acute myeloid leukemia (AML) and lung and liver carcinomas, allowing them to escape phagocytosis by macrophages. Downregulating CD47 on cancer cells discloses calreticulin (CRT) to macrophages and recovers their phagocytic activity. Herein, we postulate that using a modified graphene oxide (GO) carrier to deliver small interfering RNA (siRNA) CD47 (CD47_siRNA) in AML, A549 lung, and HepG2 liver cancer cells in co-culture in vitro will silence CD47 and flag cancer cells for CRT-mediated phagocytosis. Results showed a high knockdown efficiency of CD47 and a significant increase in CRT levels simultaneously by using GO formulation as carriers in all used cancer cell lines. The presence of CRT on cancer cells was significantly higher than levels before knockdown of CD47 and was required to achieve phagocytosis in co-culture with human macrophages. Lipid nanoparticles (LNPs) and modified boron nitride nanotubes (BNPs) were used to carry CD47_siRNA, and the knockdown efficiency values of CD47 were compared in three cancer cells in co-culture, with an achieved knockdown efficiency of >95% using LNPs as carriers. Interestingly, the high efficiency of CD47 knockdown was obtained by using the LNPs and BNP carriers; however, an increase in CRT levels on cancer cells was not required for phagocytosis to happen in co-culture with human macrophages, indicating other pathways' involvement in the phagocytosis process. These findings highlight the roles of 2D (graphene oxide), 1D (boron nitride nanotube), and "0D" (lipid nanoparticle) carriers for the delivery of siRNA to eliminate cancer cells in co-culture, likely through different phagocytosis pathways in multiple types of human cancer cells. Moreover, these results provide an explanation of immune therapies that target CD47 and the potential use of these carriers in screening drugs for such therapies in vitro.
The interaction between gold nanoparticles (AuNPs) with other components and phases has important consequences on their use in materials and devices as well as their fate in the environment or at biological interfaces. Previously we determined that long oil chain lengths and lower temperatures optimized the mixing of n-alkanes with alkanethiol-capped AuNPs which improved nanoparticle self-assembly into superlattices at aqueous interfaces. In this study, a variety of liquid phase hydrocarbon oils with structural and functional variations were surveyed for their mixing efficacy and propensity to enable reversible self-assembly of nanoparticle domains. Transmission electron microscopy (TEM) images and pressure vs area isotherms across this series reveal isotherm features that distinguish between the mixing and inclusion of the oil at the interface and that which enables reversible self-assembly. Structural and functional characteristics of the oil for promoting reversible self-assembly are identified which surpass the importance of chain length previously described. Temperatures below the ligand order–disorder transition were found to improve the reversibility of AuNP domains and are understood by application of a reparametrized x-DLVO model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.