Dual-tasking (DT) is a measure to detect impairments in people with multiple sclerosis (MS). We compared three DT methods to determine whether cognitive (Montreal Cognitive Assessment (MoCA)) or physical disability (Expanded Disease Severity Scale; EDSS) was related to DT performance. We recruited MS participants with low disability (<3 EDSS, n = 13) and high disability (≥3 EDSS, n = 9) and matched controls (n = 13). Participants walked at self-selected (SS) speed on an instrumented walkway (Protokinetics, Havertown, USA), followed by DT walks in randomized order: DT ABC (reciting every second letter of the alphabet), DT 7 (serially subtracting 7's from 100), and DT 3 (counting upwards, leaving out multiples and numbers that include 3). DT 7 resulted in the most consistent changes in performance. Both MS and control groups reduced velocity and cadence and shortened step length during DT with no significant differences between groups. Control subjects widened stride width by about 1 cm while MS subjects (collapsed as one group) did not. MS subjects with higher disability significantly increased percentage time in double support during DT compared to SS (F = 12.95, p < 0.001). The change in DS was related to cognitive and not physical disability (r = 0.54, p < 0.05).
Although poststroke aerobic exercise (AE) increases markers of neuroplasticity and protects perilesional tissue, the degree to which it enhances complex motor or cognitive outcomes is unknown. Previous research suggests that timing and dosage of exercise may be important. We synthesized data from clinical and animal studies in order to determine optimal AE training parameters and recovery outcomes for future research. Using predefined criteria, we included clinical trials of stroke of any type or duration and animal studies employing any established models of stroke. Of the 5,259 titles returned, 52 articles met our criteria, measuring the effects of AE on balance, lower extremity coordination, upper limb motor skills, learning, processing speed, memory, and executive function. We found that early-initiated low-to-moderate intensity AE improved locomotor coordination in rodents. In clinical trials, AE improved balance and lower limb coordination irrespective of intervention modality or parameter. In contrast, fine upper limb recovery was relatively resistant to AE. In terms of cognitive outcomes, poststroke AE in animals improved memory and learning, except when training was too intense. However, in clinical trials, combined training protocols more consistently improved cognition. We noted a paucity of studies examining the benefits of AE on recovery beyond cessation of the intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.