Vitamin E and selenium have been reported to improve immune function across a range of species. Ewes lambing on poor-quality dry pasture in autumn in Western Australia are at risk of being deficient in vitamin E and selenium at lambing thus predisposing their lambs to deficiencies and increasing the risk of infection and disease. This study tested the hypotheses that (i) supplementation of autumn-lambing ewes with vitamin E plus selenium in late gestation will increase the concentrations of vitamin E and selenium in plasma in the ewe and lamb and (ii) that the increased concentrations of vitamin E and selenium in plasma in the lambs will improve their innate and adaptive immune responses and thus survival. Pregnant Merino ewes were divided into a control group (n=58) which received no supplementation or a group supplemented with vitamin E plus selenium (n=55). On days 111, 125 and 140 of pregnancy ewes in the vitamin E plus selenium group were given 4 g all-rac-α-tocopherol acetate orally. On day 111 the ewes were also given 60 mg of selenium as barium selenate by subcutaneous injection. The concentrations of α-tocopherol and selenium were measured in ewes and/or lambs from day 111 of pregnancy to 14 weeks of age±10 days (weaning). Immune function of the lamb was assessed by analysing the numbers and phagocytic capacities of monocytes and polymorphonuclear leucocytes and plasma IgG and anti-tetanus toxoid antibody concentrations between birth and 14 weeks of age±10 days. Maternal supplementation with vitamin E plus selenium increased the concentration of α-tocopherol in plasma (1.13 v. 0.67 mg/l; P<0.001) and selenium in whole blood (0.12 v. 0.07 mg/l; P<0.01) of the ewes at lambing compared with controls. Supplementation also increased the concentration of α-tocopherol (0.14 v. 0.08 mg/l; P<0.001) and selenium (0.08 v. 0.05 mg/l; P<0.01) in lambs at birth compared with controls. There was no significant effect of supplementation on immune function or survival in the lambs.
Psychosocial stress is a major factor driving gastrointestinal-tract (GIT) pathophysiology and disease susceptibility in both humans and animals. Young weaned pigs typically undergo psychosocial and environmental stressors associated with production practices, including separation from their dam, mixing and crowding stress, transport and changed temperature and air-quality parameters, all of which can have significant deleterious impacts not only on performance but also on GIT structure and function, and, therefore, pig health and welfare. Strategies addressing some of these issues are explored in the current review, as well as discussion pertaining to sexual dimorphism in young pigs linked to stressful experiences, with young female pigs seemingly adversely affected more than their male counterparts. However, mechanisms governing susceptibility to stress-induced GIT functionality and disease remain inadequately understood.
Background This study investigated the validity of the DNA-marker based test to determine susceptibility to ETEC-F4 diarrhoea by comparing the results of two DNA sequencing techniques in weaner pigs following experimental infection with F4 enterotoxigenic Escherichia coli (ETEC-F4). The effects of diet and genetic susceptibility were assessed by measuring the incidence of piglet post-weaning diarrhoea (PWD), faecal E. coli shedding and the diarrhoea index. Results A DNA marker-based test targeting the mucin 4 gene ( MUC4 ) that encodes F4 fimbria receptor identified pigs as either fully susceptible (SS), partially or mildly susceptible (SR), and resistant (RR) to developing ETEC-F4 diarrhoea. To further analyse this, DNA sequencing was undertaken, and a significantly higher proportion of C nucleotides was observed for RR and SR at the Xba I cleavage site genotypes when compared to SS. However, no significant difference was found between SR and RR genotypes. Therefore, results obtained from Sanger sequencing retrospectively allocated pigs into a resistant genotype ( MUC4– ), in the case of a C nucleotide, and a susceptible genotype ( MUC4+ ), in the case of a G nucleotide, at the single nucleotide polymorphism site. A total of 72 weaner pigs (age ~ 21 days), weighing 6.1 ± 1.2 kg (mean ± SEM), were fed 3 different diets: (i) positive control (PC) group supplemented with 3 g/kg zinc oxide (ZnO), (ii) negative control (NC) group (no ZnO or HAMSA), and (iii) a diet containing a 50 g/kg high-amylose maize starch product (HAMSA) esterified with acetate. At days five and six after weaning, all pigs were orally infected with ETEC (serotype O149:F4; toxins LT1, ST1, ST2 and EAST). The percentage of pigs that developed diarrhoea following infection was higher ( P = 0.05) in MUC4+ pigs compared to MUC4– pigs (50% vs. 26.8%, respectively). Furthermore, pigs fed ZnO had less ETEC-F4 diarrhoea ( P = 0.009) than pigs fed other diets, however faecal shedding of ETEC was similar ( P > 0.05) between diets. Conclusion These results confirm that MUC4+ pigs have a higher prevalence of ETEC-F4 diarrhoea following exposure, and that pigs fed ZnO, irrespective of MUC4 status, have reduced ETEC-F4 diarrhoea. Additionally, sequencing or quantifying the single nucleotide polymorphism distribution at the Xba I cleavage site may be more reliable in identifying genotypic susceptibility when compared to traditional methods.
An infection model with enterotoxigenic Escherichia coli (ETEC) harboring the F4 fimbriae can be used to assess the impacts that various challenges associated with weaning (e.g., dietary, psychological, environmental) have on the expression of postweaning diarrhea. The objective of this study was to develop a novel inoculation method for administering an ETEC culture that would induce a higher proportion of ETEC-F4 diarrhea, in pigs that genetically showed ETEC-F4 susceptibility or resistance. The study was designed as a factorial arrangement of treatments with the factors being 1) partially susceptible or resistant to ETEC-F4 based on genetic testing, and 2) 4 challenge treatments, being a) a conventional liquid broth method using a drenching gun [Positive control (PC)], b) a Syringe method, c) a Capsule method, and d) Negative control [pigs not challenged (NC)]. At 21 ± 3 d of age (mean ± SEM), 48 male castrate pigs (Large White × Landrace) weighing approximately 7.0 ± 1.18 kg were allocated to 4 treatment groups in 2 replicate pens (6 pigs per pen). Initial ETEC-F4 susceptibility was based on a DNA marker test and each treatment group had 9 partially susceptible and 3 resistant pigs. On days 7 and 8 after weaning, pigs were challenged with ETEC (serotype O149:K88; toxins LT1, ST1, ST2, and EAST). On each inoculation day the PC pigs were orally dosed with 9 mL 7.12 × 109 colony-forming unit (CFU), the Syringe pigs with 0.8 mL 6.72 × 109 CFU, the Capsule pigs were orally administered 2 capsules containing 0.8 mL 3.28 × 109 CFU, and the NC pigs 1 mL of phosphate-buffered saline (PBS) solution. Approximately 72 h after infection, 44, 22, 78, and 0% of partially susceptible pigs in the PC, the Syringe, the Capsule, and the NC group had developed ETEC-F4 diarrhea (P = 0.007). Partially susceptible pigs had a higher diarrhea index (DI) compared to resistant pigs (31.5 vs. 4.8, P < 0.001). The NC group had a lower DI compared to the PC and Capsule pigs (3.9, 38.1, and 40.3, respectively, P < 0.005). Following infection, genetically resistant pigs in the Capsule group had a DI of zero and the partially susceptible pigs had a DI of 55.6 (P = 0.014). This study showed that genetically screening pigs and using a Capsule to deliver ETEC-F4 can increase cases of diarrhea and the efficiency of the challenge model. Taken together, these methods have the potential to reduce the number of pigs needed in future experimental infection studies.
Dietary tryptophan (Trp) is a precursor for serotonin, a neuromediator involved in stress responses. Tryptophan competes with other large neutral amino acids (LNAA: tyrosine, isoleucine, leucine, valine, and phenylalanine) to cross the blood-brain barrier, therefore regulation of circulating LNAA can influence Trp availability in the cortex and serotonin biosynthesis. The hypothesis examined in this study was that increased supplementation of dietary Trp and a reduction in LNAA for weaned pigs experimentally infected with enterotoxigenic Escherichia coli (ETEC; F4) will increase Trp availability in plasma and reduce indices of the stress response, which will translate to reduced production losses. At 21 ± 3 days of age (mean ± SEM), 96 male pigs (Large White x Landrace) weighing 6.3 ± 0.98 kg (mean ± SEM) were individually penned and allocated to a 4 x 2 factorial arrangement of treatments, with respective factors being (1) without/with ETEC infection and (2) four dietary standardized ileal digestible (SID) Trp and LNAA contents, being LTrpHLNAA (0.24% SID Trp: 5.4% SID LNAA), LTrpLLNAA (0.24% SID Trp: 4.6% SID LNAA), HTrpHLNAA (0.34% SID Trp: 5.4% SID LNAA) and HTrpLLNAA (0.34% SID Trp: 4.6% SID LNAA). Pigs were orally infected with 0.8 mL (3.6 x 109 CFU/mL) ETEC at days 7 and 8 after weaning. Pigs fed diets high in Trp irrespective of the level of LNAA (HTrpHLNAA and HTrpLLNAA) had higher plasma Trp concentrations (P < 0.001) and a Trp:LNAA ratio (P < 0.001) before infection and 6 days after infection. Following infection, non-infected pigs had higher plasma Trp (P = 0.03) and a Trp:LNAA ratio (P = 0.004) compared to pigs infected with ETEC. Plasma cortisol levels after infection were higher in ETEC-infected pigs (P = 0.05), and altering dietary Trp and LNAA concentrations did not influence (P > 0.05) plasma cortisol. Pigs fed diet HTrpLLNAA had higher serum serotonin levels 24hrs after infection (P = 0.02) compared to pigs fed diets LTrpLLNAA and HTrpHLNAA. Similarly, pigs fed diet HTrpLLNAA had a higher (P = 0.02) average daily gain during the 3-week study. Overall, average daily feed intake tended to be higher in pigs fed a HTrpLLNAA diet compared to the other diets (P = 0.08). These results suggest that the increased supplementation of dietary Trp with reduced LNAA increased circulating Trp levels that in turn likely caused higher serum serotonin levels, irrespective of infection with ETEC, and improved aspects of post-weaning performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.