In this paper, we present the design and performance of the upgraded University of Florida torsion pendulum facility for testing inertial sensor technology related to space-based gravitational wave observatories and geodesy missions. In particular, much work has been conducted on inertial sensor technology related to the Laser Interferometer Space Antenna (LISA) space gravitational wave observatory mission. A significant upgrade to the facility was the incorporation of a newly designed and fabricated LISA-like gravitational reference sensor (GRS) based on the LISA Pathfinder GRS. Its LISA-like geometry has allowed us to make noise measurements that are more representative of those in LISA and has allowed for the characterization of the mechanisms of noise induced on a LISA GRS and their underlying physics. Noise performance results and experiments exploring the effect of temperature gradients across the sensor will also be discussed. The LISA-like sensor also includes unique UV light injection geometries for UV LED based charge management. Pulsed and DC charge management experiments have been conducted using the University of Florida charge management group’s technology readiness level 4 charge management device. These experiments have allowed for the testing of charge management system hardware and techniques as well as characterizations of the dynamics of GRS test mass charging. The work presented here demonstrates the upgraded torsion pendulum’s ability to act as an effective testbed for GRS technology.
There is increasing interest in deep UV Light-Emitting Diodes (LEDs) for applications in water purification, virus inactivation, sterilization, bioagent detection, and UV curing, as well as charge management control in the Laser Interferometer Space Antenna (LISA), which will be the first gravitational wave detector in space. To fully understand the current state of commercial UV LEDs and assess their performance for use on LISA, large numbers of UV LEDs need to be tested across a range of temperatures while operating in air or in a vacuum. We describe a new hardware system designed to accommodate a high volume of UV LED performance tests and present the performance testing results from over 200 UV LEDs with wavelengths in the 250 nm range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.