) is a bioactive lipid known to control cell growth that was recently shown to act as a trophic factor for skeletal muscle, reducing the progress of denervation atrophy. The aim of this work was to investigate whether S1P is involved in skeletal muscle fiber recovery (regeneration) after myotoxic injury induced by bupivacaine. The postnatal ability of skeletal muscle to grow and regenerate is dependent on resident stem cells called satellite cells. Immunofluorescence analysis demonstrated that S1P-specific receptors S1P1 and S1P3 are expressed by quiescent satellite cells. Soleus muscles undergoing regeneration following injury induced by intramuscular injection of bupivacaine exhibited enhanced expression of S1P1 receptor, while S1P3 expression progressively decreased to adult levels. S1P 2 receptor was absent in quiescent cells but was transiently expressed in the early regenerating phases only. Administration of S1P (50 M) at the moment of myotoxic injury caused a significant increase of the mean crosssectional area of regenerating fibers in both rat and mouse. In separate experiments designed to test the trophic effects of S1P, neutralization of endogenous circulating S1P by intraperitoneal administration of anti-S1P antibody attenuated fiber growth. Use of selective modulators of S1P receptors indicated that S1P1 receptor negatively and S1P3 receptor positively modulate the early phases of regeneration, whereas S1P2 receptor appears to be less important. The present results show that S1P signaling participates in the regenerative processes of skeletal muscle. sphingosine 1-phosphate receptors; satellite cells SPHINGOSINE 1-PHOSPHATE (S1P) is a bioactive lysolipid known to regulate many critical biological processes, such as cell proliferation, survival, migration, and angiogenesis (15, 42). The extracellular action of S1P is exerted by binding to five specific cell surface G protein-coupled S1P receptors, S1P 1 -S1P 5 (4). S1P 1 , S1P 2 , and S1P 3 are expressed in all mammalian tissues, whereas S1P 4 and S1P 5 are more tissue specific. Genetic deletion of S1P 1 receptor is fatal to embryos (19), and the simultaneous deletion of both S1P 2 and S1P 3 receptors produces perinatal lethality, while S1P 2 -deficient mice are apparently healthy (16). The distinctive combination of individual S1P receptors, differentially coupled to heterotrimeric G proteins, determines in a given cell the specific biological response produced by S1P (42). S1P receptor-dependent signaling has been demonstrated in skeletal muscle cells. The mRNAs of S1P 1 -S1P 3 receptors are detectable in the myogenic C2C12 cell line derived from mouse satellite cells, with S1P 1 expression being the highest (25, 36). The relative expression of S1P receptors changes during myogenic differentiation of C2C12 cells, particularly that of S1P 2 , which progressively diminishes during differentiation and becomes almost absent by the time myotubes are formed (22). Consistently in rat adult skeletal muscle RT-PCR and Western blot data demonstrated the exp...
The neuromuscular junction (NMJ) of Drosophila melanogaster has been established as a productive model for the study of synaptogenesis, synaptic plasticity, vesicle recycling, and other synaptic functions in embryos and larvae. It also has potential for the study of long-term plasticity during adult life and degenerative processes associated with aging. Here we provide a detailed description of the morphology and ultrastructure of the NMJ on abdominal dorsal longitudinal muscles throughout adult life from eclosion to senescence. In contrast to the case in the larva, the predominant type of terminals in these muscles in the adult fly consists of only two or three branches with tightly packed synaptic boutons. We observed qualitative and quantitative changes as mean bouton size increased gradually during adulthood, and the largest boutons were present in the old fly. The length of nerve branches first increased and thereafter decreased gradually during most of adult life. Branch diameter also decreased progressively, but branch number did not change. The subsynaptic reticulum became progressively thinner, and "naked" boutons were found in old flies. Ultrastructural traits gave indications of an age-associated increment in autophagy, larger synaptic vesicles, and impaired endocytosis. We propose that NMJ aging in the fly correlates with impaired endocytosis and membrane dynamics. This view finds a functional correlate in flies carrying a temperature-sensitive mutation in shibire that reversible blocks endocytosis; age significantly reduces the time required for complete paralysis and increases the time of recovery, thus confirming the age-dependent alteration in vesicle dynamics.
Mutations in Surf1, a human gene involved in the assembly of cytochrome c oxidase (COX), cause Leigh syndrome, the most common infantile mitochondrial encephalopathy, characterized by a specific COX deficiency. We report the generation and characterization of functional knockdown (KD) lines for Surf1 in Drosophila. KD was produced by post-transcriptional silencing employing a transgene encoding a dsRNA fragment of the Drosophila homolog of human Surf1, activated by the UAS transcriptional activator. Two alternative drivers, Actin5C-GAL4 or elav-GAL4, were used to induce silencing ubiquitously or in the CNS, respectively. Actin5C-GAL4 KD produced 100% egg-to-adult lethality. Most individuals died as larvae, which were sluggish and small. The few larvae reaching the pupal stage died as early imagos. Electron microscopy of larval muscles showed severely altered mitochondria. elav-GAL4-driven KD individuals developed to adulthood, although cephalic sections revealed low COX-specific activity. Behavioral and electrophysiological abnormalities were detected, including reduced photoresponsiveness in KD larvae using either driver, reduced locomotor speed in Actin5C-GAL4 KD larvae, and impaired optomotor response as well as abnormal electroretinograms in elav-GAL4 KD flies. These results indicate important functions for SURF1 specifically related to COX activity and suggest a crucial role of mitochondrial energy pathways in organogenesis and CNS development and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.