Highlights d PoEMs, PDPN-expressing macrophages, localize in the proximity to tumor lymphatics d PDPN activates b1 integrin, mediating PoEM binding to GAL8-expressing lymphatics d PDPN in PoEMs promotes extracellular matrix remodeling d Pdpn deletion in macrophages reduces breast tumor lymphangiogenesis and lymphoinvasion
TLR3 belong to the Toll-like receptors family, it is mainly expressed on immune cells where it senses pathogen-associated molecular patterns and initiates innate immune response. TLR3 agonist poly(I:C) was developed to mimic pathogens infection and boost immune system activation to promote anti-cancer therapy. Accordingly, TLR agonists were included in the National Cancer Institute list of immunotherapeutic agents with the highest potential to cure cancer. Besides well known effects on immune cells, poly(I:C) was also shown, in experimental models, to directly induce apoptosis in cancer cells expressing TLR3.This review presents the current knowledge on the mechanism of poly(I:C)-induced apoptosis in cancer cells. Experimental evidences on positive or negative regulators of TLR3-mediated apoptosis induced by poly(I:C) are reported and strategies are proposed to successfully promote this event in cancer cells.Cancer cells apoptosis is an additional arm offered by poly(I:C), besides activation of immune system, for the treatment of various type of cancer. A further dissection of TLR3 signaling would contribute to greater resolution of the critical steps that impede full exploitation of the poly(I:C)-induced apoptosis. Experimental evidences about negative regulator of poly(I:C)-induced apoptotic program should be considered in combinations with TLR3 agonists in clinical trials.
Synopsis: IL1β is implicated in cancer progression. The authors show that IL1β promotes neutrophil accumulation in tumors and suppresses antitumor immunity independently of the inflammasome, suggesting that therapeutic inflammasome inhibition will not limit IL1β production in certain cancer types.
Interleukin-1β (IL-1β) is a central mediator of inflammation whose secretion typically requires proteolytic maturation by the inflammasome and formation of membrane pores by gasdermin D (GSDMD). Emerging evidence suggests an important role for IL-1β in promoting cancer progression in patients, but the underlying mechanisms are little understood. Here, we show a key role for IL-1β in driving tumor progression in two distinct mouse tumor models. Notably, inflammasome activation and GSDMD were dispensable for the production of intratumoral bioactive IL-1β, which promoted systemic mobilization and infiltration of neutrophils into tumors. Neutrophils recruited via IL-1β suppressed the acquisition of an effector T-cell phenotype and subsequent antitumor immune response. Moreover, IL-1β was essential for neutrophil accumulation upon antiangiogenic therapy, thereby contributing to therapy-induced immunosuppression. Antitumor immunity in the absence of IL-1β-dependent neutrophil recruitment relied on immunostimulatory macrophages which promoted the infiltration and activation of cytotoxic T-cells. Overall, these results support a tumor-promoting role for IL-1β through establishing an immunosuppressive microenvironment and show that inflammasome activation is not essential for its release in tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.