Protein nanoparticles are biomaterials composed entirely of proteins, with the protein sequence and structure determining the nanoparticle physicochemical properties. Upon exposure to physiological or environmental fluids, it is likely that protein nanoparticles, like synthetic nanoparticles, will adsorb proteins and this protein corona will be dependent on the surface properties of the protein nanoparticles. As there is little understanding of this phenomenon for engineered protein nanoparticles, the purpose of this work was to create protein nanoparticles with variable surface hydrophobicity and surface charge and establish the effect of these properties on the mass and composition of the adsorbed corona, using the fetal bovine serum as a model physiological solution. Albumin, cationic albumin, and ovalbumin cross-linked nanoparticles were developed for this investigation and their adsorbed protein coronas were isolated and characterized by gel electrophoresis and nanoliquid chromatography mass spectrometry. Distinct trends in corona mass and composition were identified for protein nanoparticles based on surface charge and surface hydrophobicity. Proteomic analyses revealed unique protein corona patterns and identified distinct proteins that are known to affect nanoparticle clearance in vivo. Further, the protein corona influenced nanoparticle internalization in vitro in a macrophage cell line. Altogether, these results demonstrate the strong effect protein identity and properties have on the corona formed on nanoparticles made from that protein. This work builds the foundation for future study of protein coronas on the wide array of protein nanoparticles used in nanomedicine and environmental applications.
Nanoparticles used in cellular applications encounter free serum proteins that adsorb onto the surface of the nanoparticle, forming a protein corona. This protein layer controls the interaction of nanoparticles with cells. For nanomedicine applications, it is important to consider how intravenous injection and the subsequent shear flow will affect the protein corona. Our goal was to determine if shear flow changed the composition of the protein corona and if these changes affected cellular binding. Colorimetric assays of protein concentration and gel electrophoresis demonstrate that polystyrene nanoparticles subjected to flow have a greater concentration of serum proteins adsorbed on the surface, especially plasminogen. Plasminogen, in the absence of nanoparticles, undergoes changes in structure in response to flow, characterized by fluorescence and circular dichroism spectroscopy. The protein-nanoparticle complexes formed from fetal bovine serum after flow had decreased cellular binding, as measured with flow cytometry. In addition to the relevance for nanomedicine, these results also highlight the technical challenges of protein corona studies. The composition of the protein corona was highly dependent on the initial mixing step: rocking, vortexing, or flow. Overall, these results reaffirm the importance of the protein corona in nanoparticle-cell interactions and point toward the challenges of predicting corona composition based on nanoparticle properties.
Highly ordered titanium dioxide nanotubes (TiO2 NTs) were fabricated through anodization and tested for their applicability as model electrodes in electrosorption studies. The crystalline structure of the TiO2 NTs was changed without modifying the nanostructure of the surface. Electrosorption capacity, charging rate, and electrochemical active surface area of TiO2 NTs with two different crystalline structures, anatase and amorphous, were investigated via chronoamperometry, cyclic voltammetry, and electrochemical impedance spectroscopy. The highest electrosorption capacities and charging rates were obtained for the anatase TiO2 NTs, largely because anatase TiO2 has a reported higher electrical conductivity and a crystalline structure that can potentially accommodate small ions within. Both electrosorption capacity and charging rate for the ions studied in this work follow the order of Cs+ > Na+ > Li+, regardless of the crystalline structure of the TiO2 NTs. This order reflects the increasing size of the hydrated ion radii of these monovalent ions. Additionally, larger effective electrochemical active surface areas are required for larger ions and lower conductivities. These findings point towards the fact that smaller hydrated-ions experience less steric hindrance and a larger comparative electrostatic force, enabling them to be more effectively electrosorbed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.